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Abstract

Mathematical modeling of the cardiovascular system yields a range of applications

in physiology and medicine to support the life scientists and clinical workers. In

particular, cardiovascular modeling has been used to study the behavior of blood

pressures in the peripheral and systemic compartments, cardiac output, ventricular

elastance and contractility in the human circulatory system under various conditions

such as constant workload and orthostatic stress. In this study, a global lumped com-

partment cardiovascular model was developed to predict the pulsatile pressures in

the finger arteries. It is a modification and integration of an existing non-pulsatile

model developed by Kappel and a simplified pulsatile left ventricle model by Olufsen.

Linking the average flow model with the pulsatile flow was the main difficulty. The

current model includes a finger artery compartment to reflect a typical site of mea-

surement of pulsatile pressures. The left ventricle is the source of pulse waves in

the system. The left ventricular elastance is modeled to reflect variations in the

stiffness of heart muscles during the exercise condition. A sigmoidal function, which

is dependent on the heart rate was used to characterize the maximum elastance

of the left ventricle. The aorta compartment is incorporated to indicate pressure

changes detected by the baroreceptors which act as sensors in the cardiovascular

system. The goal of the study is to model and investigate the blood pressure regu-



ii

latory mechanisms specifically during the exercise phase as in the bicycle ergometer

test. It is aimed at designing a feedback control represented by the baroreceptor

loop. The fundamental approach is to obtain a stabilizing control by minimizing

a cost functional, thus steering the system to the equilibrium exercise state. The

current model is reduced, modified and simplified to acquire a new system, which

in some sense, is not so different from the original. Though the character of the

system is changed, the modified model serves as the basis for the construction of

feedback control. Numerical simulations showing the dynamics of the states during

rest and exercise conditions are presented. Moreover, simulations on the behavior

of the controlled system from initial equilibrium rest phase to equilibrium exercise

phase are provided.

2010 AMS Mathematics Subject Classification: 92C30, 49J15

Key Words: pulsatile cardiovascular model, left ventricular elastance, barore-

ceptor loop, regulation of the cardiovascular system, feedback law, linear-quadratic

regulator problem, stabilizing control



Declaration

The work in this thesis is based on research carried out at the Mathematics and

Medical Physiology Modeling Group, Institute for Mathematics and Scientific Com-

puting, University of Graz, Austria. No part of this thesis has been submitted

elsewhere for any other degree or qualification and it is all my own work unless

referenced to the contrary in the text.

Copyright c© 2010 by AURELIO A. DE LOS REYES V.

“The copyright of this thesis rests with the author. No quotations from it should be

published without the author’s prior written consent and information derived from

it should be acknowledged”.

iii



Acknowledgements

I would like to express my deepest gratitude to Prof. Dr. Franz Kappel for his

exceptional supervision. As an advisor, he provided me with his full professional

support in dealing with this PhD research project. His constant encouragement

helped and challenged me throughout my studies. He is not only a mentor but a

colleague with great stories and sense of humor. He is well respected due to his

wide range of knowledge, good interpersonal skills and humility which are worthy

to emulate.

Many thanks to all the faculty and staff of the Institute for Mathematics and

Scientific Computing for providing me with a very conducive working environment.

To Dr. Jerry Batzel who indirectly supervised my work and invested time to give

his valuable input to the thesis. He is very patient with my “unforgivable mistakes”

in mathematics. Sharing stressful times with him in the same office made my PhD

life more exciting. To Prof. Dr. Stephen Keeling who encouraged me to put my

best effort into every academic endeavor. He imparted excellent class lectures and

offered academic career advice to focus on things I enjoy doing. To Prof. Dr. Georg

Propst and Prof. Dr. Gundolf Haase for sharing their time with other (interna-

tional) students. To Frau Gerlinde Krois who assisted me throughout my academic

program. To Fabian Tschiatschek who configured and installed all the software I

needed in my laptop and office computer.

I gratefully acknowledge the financial support administered by the Austrian Aca-
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Introduction

It is an amazing fact that the human body is composed of thousands of built-in

control mechanisms embedded in it. Intricate and complicated, the control systems

operate within the organs to control the function of its individual parts. Some con-

vey information throughout the entire body to regulate the interactions between

the organs. Examples of which are the following: the genetic control systems within

the cells that control intracellular functions and life processes, the insulin control

system which regulates the glucose concentration in the extracellular fluid, the con-

trol of body temperature, and the regulation of oxygen and carbon dioxide in the

extracellular fluid.

In the cardiovascular system, the rate of blood flow through most tissues is con-

trolled in relation to the tissue need. The microvessels of each tissue continuously

monitor tissue needs, such as the oxygen supply and other nutrients and the ac-

cumulation of carbon dioxide and waste products. In turn, the local blood vessels

respond by dilating or contracting to control local blood flow to that level required

for the tissue activity. Also, the nervous control system provides additional help

in controlling tissue blood flow. In addition, the heart is controlled to provide the

necessary cardiac output so that it pumps the required amount of blood flow. It is

regulated by the sum of all the local tissue flow. Furthermore, the arterial pressure

is controlled by either local blood flow or cardiac output control. For prolonged

periods, the kidneys also play a major role in pressure control by secreting pressure-

controlling hormones and by regulating the blood volume. Further details can be

found in Guyton and Hall (2006) [15].

1



Chapter 0. Introduction 2

The human body is designed to operate in an optimal way. It works in such

a way that the consumption of energy is minimized. In the cardiovascular system,

the work done for ejection of the stroke volume needs to be minimized. Numerous

models have been developed to investigate various parts of the circulatory system

under the basic assumption that an optimality criterion is satisfied. Such studies can

be found in Doubek (1978) [21], Kenner and Pfeiffer (1980) [28], Noldus (1976) [36],

Ono, et al. (1982) [40] and Pfeiffer and Kenner (1981) [45]. For survey of models of

this type, refer to Noordergraaf (1969) [37] and Swan (1984) [53].

The goal of this PhD thesis is two-fold. First is to develop a global pulsatile car-

diovascular system which incorporates the essential subsystems. We are interested

in obtaining a pulsatile pressure in the finger arteries where real-time measurements

can be obtained and the numerical simulations can be validated. We extended

the basic model developed by Kappel and Peer (1993) [26] and related works (e.g.

Lafer (1996), [31], Kappel et al. [25], Timischl (1998) [54], etc.) to model pulsatil-

ity of blood flow by using Olufsen’s model of the left ventricle (see Olufsen et al.

(2009) [46]). Most of the cardiovascular system models and their short-term re-

sponses are modifications and/or extensions of Grodins compartment model, see for

instance, Grodins (1959) [12] and (1963) [13]. Second is to design a feedback law

mechanism described by the baroreceptor loop that stabilizes the system from an

initial equilibrium rest condition to an equilibrium exercise condition. We want to

construct a model for basic cardiovascular control mechanisms assuming that the

regulation is optimal with respect to the cost criterion. The idea is to describe the

overall cardiovascular reaction to a constant ergometric workload imposed on a test

person on a bicycle-ergometer test.

Our approach is to use the concept of optimal control theory. In medicine, one

of its purposes is to gather information about the nature of the controller and ana-

lyze its predictions. It aides in understanding the aspects of control of the normal

and diseased situation of an organism. An important example of an application of

optimal control theory in medicine is the use of an optimal feedback control for the
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automatic delivery of drugs such as insulin or hypotensive drugs via microprocessors.

For further applications of optimal control theory in biomedicine, see for instance,

Swan (1984) [53] and Noordergraaf and Melbin (1982) [38].

The thesis is organized as follows: Chapter 1 reviews the basic concepts in car-

diovascular physiology. It talks briefly about the functions of the cardiovascular

system and some of its parts, the heart and its valves which have roles in the mod-

eling process, the phases of the cardiac cycle including the systole and diastole, and

the cardiac output. In addition, some control mechanisms in the cardiovascular sys-

tem are discussed. It includes the baroreceptor loop and the local metabolic controls

which are necessary for our purpose.

Chapter 2 is mainly devoted to the mathematical modeling of the cardiovascular

system. The electric analog of the model under study is presented and the different

compartments are discussed. A linear relation is used to model the blood volume in

the compartment. The mass balance equations play a role in describing the blood

flow in the compartments. The filling and ejection processes in the right ventricle

are presented. Since we want to model the action of the left ventricle as a pump, a

section on opening and closing of the heart valves is included. Model adaptation and

modification of the time-varying elastance function is necessary to attain the objec-

tive of the study, i.e. to model rest and exercise condition. Thus, a separate section

deals with it. To study the cardiovascular response under an ergometric workload,

metabolic and autoregulation processes are modeled. Lastly, a section on the con-

tractility of the right ventricle is presented including the Bowditch effect mechanism.

Chapter 3 provides some of the basic concepts in control theory with emphasis

on the linear-time invariant systems. Important definitions and relevant results are

presented without proofs. The chapter begins by defining linear control systems.

Stability deals with the overall behavior of the system. Controllability talks about

steering the system from a given initial state to other given final state. A section

on stabilizability answers the question of how to find a control function that could
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steer the response of the system to zero state. Another important concept is recon-

structibility which discusses how to determine the behavior of the state from the

behavior of the output. Detectability in the context of linear-time invariant systems

is defined. The section on linear state feedback control discusses how the control

system adjusts to operate satisfactorily. It presents the feedback feature of the con-

trol system, the linear control law and how to stabilize a controllable system by the

state feedback. The deterministic linear optimal regulator problem section leads to

an optimization problem minimizing a cost functional. A section providing a result

on nonlinear systems is included.

Chapter 4 presents the overall cardiovascular system model in consideration and

the corresponding block diagram. Then a motivation for the control problem is

discussed. Periodic solutions and the determination of equilibrium values are pre-

sented. The following three sections, namely, system modifications and reductions,

the linear-quadratic regulator problem and the optimal linear feedback control lead

to the construction of the linear feedback. The nonlinear control problem is then

reiterated to conclude the chapter.

Chapter 5 is dedicated to the numerical computations and simulations. The sec-

tion on the left ventricle provides the computation for the start and end of filling

and ejection processes. Simulations of the pressure and volume curves including the

pressure-volume diagram of the left ventricle is presented. A thorough discussion on

the computation of the mean values (respectively, equilibrium values) is included.

Graphical comparisons of the state variables during rest and exercise equilibrium

conditions are provided. The remainder of the section presents simulations showing

the dynamics of the controlled system.

Chapter 6 summarizes the results obtained in this study. Moreover, the limita-

tions of the model and further investigations are presented.

Appendix A contains the tables for the variables and parameter values used in
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the model.

Finally, Appendix B provides the derivations of some relevant equations in the

model and the formula for the entries in the Jacobian F(x̂, p̂,W, 0) with respect to

x̂ and B(x̌, p̌,W, 0) with respect to x̌.



Chapter 1

Basic Cardiovascular Physiology

and Control Mechanisms

In modeling the cardiovascular system, relevant concepts underlying its physiology

should be understood. In this chapter, we present some physiological facts needed

in the modeling process. The first four sections are dedicated to the physiology of

the cardiovascular system and the biological processes and activities in the heart.

The last two sections provide a brief overview of the physiological controls of blood

flow, the baroreceptor and local metabolic controls. Most of the materials covered

in this chapter can be found in the textbook of Medical Physiology by Guyton

and Hall (2006) [15] and Batzel et al. (2007) [2]. Some other relevant references

are Hoppensteadt and Peskin (2002) [19], Klabunde (2005) [29], Levick (2003) [32],

Ottesen (2004) [41], and Westerhof et al. (2005) [55].

1.1 The Cardiovascular System

The human cardiovascular system is a transport system in which its primary task

is to provide the various cells with the needed oxygen and other substrates for

metabolism. Carbon dioxide and other waste products of metabolism must be re-

moved. Moreover, it transports hormones and enzymes which regulate cell functions.

In general, its function is to maintain an appropriate environment in all the tissue

fluids of the body for optimal survival and function of the cells. The cardiovascular

6
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system consists of two vascular circuits: the pulmonary circuit and the systemic

circuit. The pulmonary circuit carries blood through the lung region while the sys-

temic circuit transports blood through the tissue region.

Let us try to understand the role of each part in the cardiovascular system. The

arteries transport blood under high pressure to the tissues. They have strong vas-

cular walls, and blood flows at a high velocity in the arteries. The arterioles are the

last small branches of the arterial system serving as control ducts through which

the blood is released into the capillaries. They have strong muscular walls that

can constrict or dilate, the arterioles thus having the capability of vastly altering

blood flow in each tissue bed in response to the need of the tissue. The capillaries

provide venue where fluid, nutrients, electrolytes, hormones, and other substances

exchange with the blood and the interstitial fluid. For this purpose, they have very

thin walls and have numerous minute capillary pores permeable to water and other

small molecular substances. The venules collect blood from the capillaries. They

gradually merge into progressively larger veins. The veins act as conduits for trans-

port of blood from the venules back to the heart. Venous walls are thin since the

pressure in the venous system is very low. However, they are muscular enough to

contract or expand serving as a controllable reservoir for extra blood.

Figure 1.1 depicts the blood flow in the cardiovascular system through the sys-

temic and pulmonary circuits. The oxygenated (red) blood, rich in oxygen (O2),

is pumped by the left ventricle into aorta, the first vessel of the arterial tree dis-

tributing the blood to all regions of the body. The vasculature branches into pro-

gressively smaller vessels, from larger to smaller systemic arteries, further on to

systemic arterioles and down to the systemic capillaries. In the capillary region, O2

and nutrients needed for metabolism are delivered and waste products such as car-

bon dioxide (CO2) are removed. Leaving the systemic capillaries, the deoxygenated

(blue) blood enriched with CO2 and depleted of O2, enters the systemic venous sys-

tem. The venous blood then reaches the right atrium through veins of progressively

larger diameter (venules, small veins, superior and inferior vena cava). The venous
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Figure 1.1: The blood flow in the cardiovascular system. (source: http://www.niaaa.

nih.gov /NR/rdonlyres/ BF321698-FDCA-443F-9D66-6E00F445CDAF/0/270f1.gif)

blood is then collected by the right ventricle, which pumps it into the pulmonary

artery and the pulmonary arterial tree distributing the blood to the alveolar region

of the lungs. In the pulmonary capillaries, the CO2 in the blood is removed and

replaced with O2 making the blood turn red. Then the blood flows through the

pulmonary veins to the left atrium and further collected by the left ventricle and

the cycle starts over again.

1.2 The Heart

The heart plays the central role in the cardiovascular system. It functions as two

separate pumps: a right heart that pumps blood through the pulmonary circuit,

and a left heart that pumps blood through the systemic circuit. Each of these

hearts is composed of an atrium and a ventricle. Thus, the heart consists of four

chambers in total: left atrium, left ventricle, right atrium, and right ventricle. The

atria act as weak primer pump helping to efficiently load the ventricle with sufficient

blood. The ventricles serve as the primary pumps propelling the blood to the system

either through the pulmonary circulation by the right ventricle or the systemic
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circulation by the left ventricle. The left ventricle has a much thicker and muscular

wall than the right ventricle since it has to generate greater pressures. There are four

valves within the heart that ensure the blood flows correctly, from atria to ventricle

(atrioventricular valves), and then to the arterial circulations through the outflow

valves. The atrioventricular valves are the tricuspid valve for the right ventricle and

the mitral valve for the left ventricle. While the outflow valves are the pulmonary

valve for the right ventricle and the aortic valve for the left ventricle. These valves

work like gates that only open one way and when pushed on. Each valve opens and

closes once per heart beat or about once every second. Figure 1.2 shows the four

chambers of the heart and the heart valves.

Figure 1.2: The heart. (source: http://bwh-www.bhexhale.com/womenshealth/hearthealth/ assets/ im-

ages/ lowlevel imgs/ heart-valves/img.gif)

1.3 The Cardiac Cycle

Cardiac cycle refers to the the cardiac events that occur from the beginning of one

heartbeat to the beginning of the next. It consists of two phases namely, systole

and diastole . Systole is a period of contraction. It starts with the contraction of

the heart muscles causing the ventricular pressure to increase. During this period,

the atrioventricular valves are closed. As long as the ventricular pressure is lower

than the pressure in the artery (aorta or pulmonary artery), the outflow valves are
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closed. In this phase of contraction, the volume in the ventricle does not change

and thus called isovolumetric contraction. Once the ventricular pressure reaches the

pressure in the artery, the outflow valve opens. It is about 80 [mmHg] for the left

ventricle and about 10 [mmHg] for the right ventricle. Then the ejection phase of

the systole starts. Each ventricle ejects approximately 65% of the volume which

was in the ventricle at the beginning of the systole during resting condition. The

quotient
“ejected volume”

“ventricular volume”
at the beginning of the systole is known as the ejec-

tion fraction of the ventricle. The ventricular pressure continues to increase during

the ejection phase. For the left ventricle it goes up to approximately 120 [mmHg]

and about 25 [mmHg] for the right ventricle. At the end of the systole the heart

muscle starts to relax causing a rapid decrease in the ventricular pressure. When

the ventricular pressure falls below the arterial pressure (now is higher than the

pressure at the beginning of the systole), the outflow valve closes and the diastole

starts. Diastole is a period of relaxation. The first phase of the diastole is an isovol-

umetric relaxation of the heart muscle in which ventricular volume is not changed

though its pressure is tremendously decreased. The ventricular pressure drops until

it reaches the pressure in the atria which is about 5 [mmHg] for the left ventricle and

8 [mmHg] for the right ventricle. Then the inflow valves open. The heart muscle

relaxation continues causing a further drop in the ventricular pressure below the

arterial pressure. As a consequence of the pressure difference, blood flows into the

ventricle known as the filling phase. The diastole ends when the heart muscle starts

to contract increasing ventricular pressure above the pressure in the atria and the

inflow valve closes.

Figure 1.3 illustrates the cardiac cycle. This figure is adapted from Klabunde

(2005) [29]. Refer to this material for detailed information concerning the phases in

the cardiac cycle.
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Figure 1.3: The cardiac cycle. (source: http://www.cvphysiology.com/Heart%20Disease/HD002%20cardiac

%20cycle%202007r1.gif)

1.4 Cardiac Output

Cardiac output is the amount of blood pumped into the aorta each minute by the

heart which flows through the circulation, in particular, the cardiovascular system.

It varies widely with the level of activities of the body. Some of the factors that

directly affect the cardiac output are the basic level of body metabolism, person’s

age, person’s body size and person’s activity such as exercise. The normal resting

cardiac output for young, healthy men is about 5.6 [L/min] (≈ 93.33 [mL/sec]). For

women, it is about 4.9 [L/min] (≈ 81.67 [mL/sec]).

The cardiac output is given as the product of the heart rate and the ventricular

stroke volume (Vstr), the blood volume ejected each time the heart beats. Vstr is the

difference between the end-diastolic volume Vdias and the end-systolic volume Vsyst.

Vdias is the volume of the ventricle prior to contraction, that is, the volume in the

ventricle at the end of the filling process when the inflow valve closes. Vsyst is the

residual blood volume left in the ventricle after ejection, that is, the volume remain-

ing in the ventricle after the outflow valve closes at the end of the systole. Three

primary mechanisms regulate the end-diastolic and end-systolic volume, and there-
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fore, stroke volume. These are the preload, afterload and inotropy (cf. Klabunde

(2005) [29]).

The left ventricular pressure-volume loop is depicted in Figure (1.4). It also

points out the phases when the mitral and aortic valves are open and closed, filling

and ejection processes, isovolumetric relaxation and contraction, and the left ven-

tricular stroke volume.

Figure 1.4: The pressure-volume loop of the left ventricle. (source: http://

www.adinstruments.com/ solutions/images new/ pv01.jpg)

There are numerous control mechanisms acting in the cardiovascular system.

These act to adjust the blood flow in different body regions depending on various

needs. There are global and local control loops. The global control loops including

the central nervous system provide overall conditions which are necessary to sustain

flows controlled by autoregulatory mechanisms of the various tissue regions and

organs. For our purpose, we will consider only the baroreceptor loop control. It

is one of the most important global control loops, as far as short-term regulation

of the cardiovascular system is concerned. We will also consider local regulatory

mechanisms which regulate local blood flow to meet local metabolic demands. The

following sections presents the baroreceptor and local metabolic controls.
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1.5 Central Nervous Regulation: Baroreceptors

The nervous control of the cardiovascular system has global functions, such as redis-

tributing blood flow to different areas of the body, increasing or decreasing pumping

activity by the heart, and, providing rapid control of systemic arterial pressure. The

autonomic nervous system controls the circulation. It consists of the sympathetic

and parasympathetic nervous system.

The sympathetic innervation of the small arteries and arterioles allows an in-

crease or decrease of resistance to blood flow and thereby a decrease or increase

in the rate of blood flow through the tissues. On the other hand, sympathetic

innervation of the large veins decreases or increases the volume of these vessels.

Moreover, sympathetic stimulation increases the activity of the heart, both increas-

ing the heart rate and enhancing its strength of contraction. The parasympathetic

nervous system controls the heart rate through its parasympathetic nerve fibers to

the heart in the vagus nerves. Parasympathetic stimulation decreases the heart rate.

The capability of the nervous control of the circulation to cause rapid increases

in arterial pressure is one of its most important functions. An example is the in-

crease in pressure during muscle exercise. The best known nervous mechanisms for

arterial pressure control is the baroreceptor reflex or baroreceptor loop. Basically, it

is initiated by stretch receptors called the baroreceptors or pressoreceptors. They

are spray-type nerve endings located at the carotid sinus and the aortic arch (see

Figure 1.5). An increase in the arterial pressure stretches the baroreceptors and

causes them to transmit nerve impulses to the central nervous system (i.e., medulla

of the brain). “Feedback” impulses are then sent back through the autonomic ner-

vous system causing the arterial pressure to reach the required level.
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Figure 1.5: The arterial baroreceptors. (source: http://mor.phe.us/jtw/Gateway/Projects/ Ver-

tebrates/images/ EvolutionOfTheHeart/ArterialBaroreceptors.gif)

1.6 Local Metabolic Control

The ability of a tissue to control the local blood flow in proportion to the metabolic

needs is one of the fundamental principles of circulatory function. Some of the spe-

cific needs for blood flow include the delivery of oxygen and other nutrients, such

as glucose, amino acids and fatty acids to the tissues, removal of carbon dioxide

and hydrogen ions from the tissues and the transport of various hormones and other

substances to the different tissues. In addition, some organs have specific needs. For

example, blood flow to the skin determines the heat loss from the body and helps

control body temperature. Also, kidneys need adequate quantities of blood plasma

to excrete the waste products of the body.

One should note the fact, that it is impossible to allow a very large blood flow all

the time through every tissue of the body to satisfy its needs. Because, this would

require many times more blood flow than the heart can pump. It has been shown

through experiments that the blood flow to each tissue is usually regulated at the

minimal level that will supply the tissue’s requirements. In tissues for which the

delivery of oxygen is the most important, blood flow is always controlled at a level

only slightly more than required to maintain full tissue oxygenation. Controlling
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the blood flow in an exact way provides sufficient oxygen to the tissues while at the

same time keeping the workload on the heart at a minimum.

There are two phases for the local blood flow control, namely: acute control and

long-term control. In our case, we will just briefly talk about the acute control. This

is achieved by rapid changes in local vasodilation or vasoconstriction of the arterioles,

metarterioles, and precapillary sphincters. This occurs within seconds to minutes

providing rapid maintenance of appropriate local tissue blood flow. It has been

shown that increasing the rate of metabolism in a local tissue up to eight times than

the normal, increases the blood flow acutely about fourfold. Also, when the avail-

ability of oxygen to tissues decreases, the blood flow through the tissues increases

too. Two basic theories were proposed for the regulation of local blood flow when

either the rate of tissue metabolism changes or the availability of oxygen changes.

First is the vasodilator theory proposing that the greater the rate of metabolism or

the less the availability of oxygen or some other nutrients to a tissue, the greater

the rate of formation of vasodilator substances in the tissue cells. These vasodilator

substances are believed to diffuse through the tissues causing dilation. The second

theory is known as the oxygen lack (more generally, nutrient lack) theory. Oxygen

and other substances are metabolic nutrients required to cause vascular muscle con-

traction. Thus, in the absence of adequate oxygen, the blood vessels would relax

and therefore naturally dilate. Moreover, an increased consumption of oxygen in the

tissues due to increased metabolism could decrease the availability of oxygen to the

smooth muscle fibers in the local blood vessels that would cause local vasodilation.

The aforementioned theories could explain acute flow regulation in response to the

metabolic needs of the tissues. Thus far, we considered the mechanism of local blood

flow control in response to the tissue’s metabolic needs. This mechanism is called

metabolic mechanism.



Chapter 2

Mathematical Modeling of the

Cardiovascular System

In this chapter, cardiovascular modeling procedures will be discussed. The mathe-

matical modeling is focused on the reaction of the cardiovascular system to a con-

stant ergometric workload. Modeling discussions are mainly followed from Kappel

and Peer (1993) [26] and related works, Batzel et. al (2007) [2] and Olufsen et.al

(2009) [46].

The cardiovascular model presented here is depicted in Figure 2.1. It includes

arterial and venous pulmonary, left and right ventricles, systemic aorta, finger ar-

teries, and arterial and venous systemic compartments. In the compartments, pres-

sures and compliances are denoted by P and c, respectively. The resistances are

denoted by R. In the right ventricle, Q stands for the cardiac output and S for

the contractility. The subscripts of P , c, Q and S stand mainly for the name of

the compartments. That is, ap, vp, `v, sa, fa, as, vs, and rv correspond respectively

to the arterial pulmonary, venous pulmonary, left ventricle, systemic aorta, finger

arteries, arterial systemic, venous systemic and right ventricle compartments. For

the resistances, Rmv(t) and Rav(t) denote the time-varying mitral valve and aortic

valve resistances, respectively, Rpp is the pulmonary peripheral resistance, Rsc1 is

the systemic circuit resistance connecting the aorta and the finger compartments,

Rsc2 is the systemic circuit resistance joining the aorta and the rest of the arterial

16
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systemic compartments, Rspf
is the systemic peripheral resistance between finger

and the venous systemic compartments and Rsp is the systemic peripheral resis-

tance from the arterial systemic to the venous systemic compartments. Moreover,

E`v(t) is the time-varying elastance of the left ventricle.

This model is a combination of two existing cardiovascular models: a non-

pulsatile global model adapted from the earlier work of Kappel and Peer (1993) [26]

and a simplified pulsatile left heart model by Olufsen et al. (2009) [46]. The non-

pulsatile global model incorporates all the essential subsystems such as systemic

and pulmonary circulation, left and right ventricles, baroreceptor loop, etc. It is

based on a four compartment model by Grodins describing the mechanical part of

the cardiovascular system. Included in the model are the basic mechanisms such as

Starling’s law of the heart, the Bowditch effect and autoregulation in the periph-

eral regions. This model considered the mean values over one heart cycle instead

of the instantaneous values. It has been developed to investigate the response of

the system to a short term submaximal workload. The basic control autoregulatory

mechanisms were constructed assuming that the regulation is optimal with respect

to a cost criterion. The model provided a satisfactory description of the overall reac-

tion of the cardiovascular system under a constant ergometric workload imposed on

a test person on a bicycle-ergometer. Further studies have been done to include the

respiratory system, see Timischl (1998) [54]. The model was also extended and used

to describe the response of the cardiovascular-respiratory system under orthostatic

stress condition, see for example Fink et al. (2004) [34] and Kappel et al. (2007) [24].

On the other hand, in the study done by Olufsen et. al (2009) [46], a simple

lumped parameter cardiovascular model was developed to analyze cerebral blood

flow velocity and finger blood pressure measurements during orthostatic stress (sit-

to-stand). This pulsatile left heart model utilizes a minimal cardiovascular structure

to close the circulatory loop. The model consists of two arterial compartments and

two venous compartments combining vessels in the body and the brain, and a heart

compartment representing the left ventricle. It was simplified to account for the
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cardiovascular dynamics during (sitting) rest condition.

The first goal of the modeling effort is to integrate the (Olufsen) left heart model

with the (Kappel) global cardiovascular model. The main objective of the study

is to develop a global pulsatile lumped compartment model that predicts pressures

in the systemic and pulmonary circulation, as well as the pulsatile pressures in the

finger arteries.

Figure 2.2 shows the combined cardiovascular model depicting the non-pulsatile

(Kappel) part, pulsatile left heart (Olufsen) model and the modifications made. The

systemic aorta compartment is added for it is the site of the baroreceptor loop. Fin-

ger arteries compartment is included to reflect measurements of pulsatile pressures.

The current model is mathematically formulated in terms of an electric circuit

analog. The blood pressure difference plays the role of voltage, the blood flow plays

the role of current, the stressed volume plays the role of an electric charge, the

compliances of the blood vessels play the role of capacitors, and the resistances are

the resistors. The stressed volume in a compartment is the difference between to-

tal and unstressed volume (i.e., the volume in a compartment at zero transmural

pressure). Thus, stressed volume is the additional volume added to the unstressed

volume when positive transmural pressure causes a stretching of the vascular walls.

The following are the basic assumptions of the modeling process:

◦ The vessels in the arterial and venous parts of the systemic or pulmonary circuits

are lumped together as a single compartment for each of these parts. Each

compartment is considered as a vessel with compliant walls in which its volume

is characterized by the pressure in the vessel. Thus, these vessels are called

compliance vessels.

◦ The systemic peripheral or pulmonary peripheral region is composed of capillar-

ies, arterioles, and venules which are lumped together into a single vessel. These

vessels are considered to be pure resistance to blood flow and characterized only
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by flow through the vessel. Therefore these vessels are called resistance vessels.

◦ The atria are not represented in the model. It is assumed that the right atrium

is part of the venous systemic compartment and the left atrium is part of the

venous pulmonary compartment.

2.1 Blood Volume in the Compartment

For each compartment, we associate the pressure P (t) and the volume V (t) of the

blood. Assuming linear relationship between the transmural pressure and the total

volume, we have

V (t) = cP (t), (2.1)

where c represents the compliance of the compartment which is assumed to be con-

stant. In this case, the unstressed volume is zero and the stressed volume equals the

total volume in the compartment. Generally, the total volume in the compartment

can be expressed as

V (t) = cP (t) + Vu, (2.2)

where Vu denotes the unstressed volume. A more physiologically realistic approach

is to consider that the relation between pressure and total volume is V = f(P )

which is nonlinear. In this case the unstressed volume is given by Vu = f(0) and

the compliance, c(P ) at pressure P is f ′(P ) assuming smoothness on f .

For simplicity, we used (2.2) assuming Vu = 0 in most of the compartments except

in the left ventricle. This is mainly to avoid introduction of additional parameters

which cannot be observed directly. This however introduces a modeling error that

needs to be considered for further investigations.

2.2 Blood Flow and Mass Balance Equations

The blood flow is described in terms of the mass balance equations, that is, the rate

of change for the blood volume V (t) in a compartment is the difference between the
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flow into and out of the compartment (see Figure 2.3).

Fin Fout

Fin − Fout

compartment

=

dV (t)
dt

Figure 2.3: The rate of change for the volume in a compartment assuming mass

balance equation.

For a generic compartment, we have

dV (t)

dt
=

d

dt
(cP (t)) = Fin − Fout , (2.3)

where c denotes the compliance, P (t) the blood pressure in the compartment and

Fin and Fout are the blood flows into and out of the compartment, respectively. The

loss term in the current compartment is the gain term in the adjacent compartment.

Also, the flow F between two compartments can be described by Ohm’s law. That

is, it depends on the pressure difference between adjacent compartments and on the

resistances R against blood flow. Thus we have the relation

F =
1

R
(P1 − P2) , (2.4)

where P1 and P2 are pressures from adjacent generic compartments 1 and 2, respec-

tively. Hence, for systemic peripheral flow Fsp and pulmonary peripheral flow Fpp,

we have

Fsp =
1

Rsp

(Pas − Pvs) +
1

Rspf

(Pfa − Pvs) ,

Fpp =
1

Rpp

(Pap − Pvp) .

(2.5)

The blood flow out of the venous systemic compartment is the cardiac output

Qrv(t) which is the blood flow into the arterial pulmonary. The cardiac output

generated by the right ventricle is given by

Qrv(t) = HVstr(t), (2.6)
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where H is the heart rate and Vstr(t) is the stroke volume, that is the blood volume

ejected by one beat of the ventricle.

Moreover, the change in the volume in the left ventricle dV`v(t)
dt

as modeled in [46]

is
dV`v(t)

dt
=

Pvp(t)− P`v(t)
Rmv(t)

− P`v(t)− Psa(t)
Rav(t)

, (2.7)

where Pvp(t), P`v(t) and Psa(t) are the blood pressures in the venous pulmonary, left

ventricle and systemic aorta compartments and the time-varying elastances Rmv(t)

and Rav(t) in the mitral valve and aortic valve, respectively.

2.3 Filling and Ejection Processes in the Right

Ventricle

In this section, we will consider the filling process in some detail and the ejection

process in a global manner. We will follow the discussions in Batzel et. al (2007) [2]

to model these processes in the right ventricle. Let us consider the inflow into the

ventricle which depends on the pressure difference between the filling pressure and

the pressure in the right ventricle when the inflow valve (tricuspid valve) is open.

As in equation (2.4) (taking note that F = dV (t)
dt

),

dVrv(t)

dt
=

1

Rrv

(Pvs(t)− Prv(t)) , (2.8)

where Vrv(t) is the volume in the right ventricle at time t after the filling process

has begun, Prv(t) is the pressure in the right ventricle, Pvs(t) is the venous systemic

filling pressure representing the pre-load to the right ventricle, and Rrv is the total

resistance to the inflow into the right ventricle.

Also, let us assume the following as in Batzel et al. (2007) [2]:

• During the diastolic period, Pvs(t) ≡ Pvs is a constant. In fact, Pvs(t) does

not vary much. Also, we assume that the arterial pressure Pap, denoting the

after-load to the right ventricle, remains constant during systolic period. It is
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also important to note that the systolic period duration is shorter than that

of the diastolic period.

• The end-systolic volume at the end of a heart beat is the same as the end-

systolic volume of the previous beat.

• The compliance crv of the relaxed ventricle remains constant during the dias-

tolic period.

Now, let us talk about the filling process in the right ventricle. During this

phase, the right ventricle is in a relaxed state and has the end-systolic volume.

That is, Vrv(0) = Vrv,syst, which is the initial condition for the differential equation

(2.8). Assuming that the relaxed right ventricle has unstressed volume Vu = 0, its

volume-pressure relation would be given by

Vrv(t) = crvPrv(t) . (2.9)

Solving P (t) in terms of Vrv(t) and crv in equation (2.9) and plugging it in equation

(2.8) will yield the following differential equation

dVrv(t)

dt
+

1

crvRrv

Vrv(t)−
1

Rrv

Pvs = 0 , Vrv(0) = Vrv,syst . (2.10)

Integrating the above equation using the constant of variation formula will obtain

Vrv(t) = Vrv,syste
−t(crvRrv)−1

+ crvPvs

(
1− e−t(crvRrv)−1

)
. (2.11)

Let the duration of the filling process be denoted by td = td(H). After td the volume

in the right ventricle is the end-diastolic volume, Vrv(td) = Vrv,diast which is given by

Vrv,diast = Vrv,syste
−td(H)(crvRrv)−1

+ crvPvs

(
1− e−td(H)(crvRrv)−1

)
. (2.12)

Setting

kr(H) = e−td(H)(crvRrv)−1

and ar(H) = 1− kr(H) , (2.13)

we have

Vrv,diast = Vrv,systkr(H) + crvPvsar(H) . (2.14)

For the duration of the diastole we assume

td = td(H) =
1

H
− κ

H1/2
, (2.15)
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where κ is in the range of 0.3 − 0.4 when time is measured in seconds and in the

range of 0.0387 − 0.0516 when time is measured in minutes. The time duration of

the systole ts = κ
H1/2 is known as the Bazett’s formula (cf. Bazett (1920) [3]). Then

clearly equation (2.15) follows from td + ts = 1
H

.

Let us now consider the ejection process. At the start of the ejection, the right

ventricle contains the end-diastolic volume Vrv,diast. Then it ejects the stroke volume

Vrv,str against the arterial pulmonary blood pressure Pap and thus leaving the end-

systolic volume Vrv,syst. Hence, the stroke volume in the right ventricle is given

by

Vrv,str = Vrv,diast − Vrv,syst . (2.16)

According to the Frank-Starling mechanism (cf. Patterson, et al. (1914) [43]),

a larger distention of the heart caused by increased filling of the ventricle during

diastole causes an increased force of contraction during the following systole. Using

this concept, we have the relation

Vrv,str = Srv
Vrv,diast

Pap
, (2.17)

where Pap is the arterial pulmonary pressure and Srv is the contractility of the right

ventricle characterizing its force of contraction. Obviously, we must have

Vrv,str ≤ Vrv,diast , (2.18)

otherwise more blood volume will be ejected than has been contained in the right

ventricle. Thus, the above relation (2.17) suggests that

Srv
Pap

≤ 1 . (2.19)

A smooth function that approximates min(Sr, Pap) is given by

fε(Sr, Pap) =
Sr if 0 ≤ Sr ≤ (1− ε)Pap ,

− 1

4εPap
S2
r +

1 + ε

2ε
Sr −

(1− ε)2

4ε
Pap if (1− ε)Pap < Sr ≤ (1 + ε)Pap ,

Pap if Sr > (1 + ε)P ,

(2.20)
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where ε < 0 is arbitrarily small. In Kappel et al. (1997) [25] and Timischl (1998) [54],

this function is defined as

f(Srv, Pap) = 0.5 (Srv + Pap)− 0.5
(
(Pap − Srv)2 + 0.001

)1/2
. (2.21)

This function also chooses the minimum between Srv and Pap. The term 0.001 is

used to smoothen f(Srv, Pap) around Srv = Pap. The latter is used in the numerical

simulations due to its sufficient smoothness property. Hence, Srv in (2.17) can be

replaced by f(Srv, Pap) obtaining

Vrv,str = f(Srv, Pap)
Vrv,diast

Pap
. (2.22)

Using equations (2.14), (2.16) and (2.22), the stroke volume of the right ventricle

Vrv,str can be expressed as

Vrv,str =
crvPvsar(H)f(Srv, Pap)

ar(H)Pap + kr(H)f(Srv, Pap)
. (2.23)

We can now write the right ventricular cardiac output as

Qrv = H
crvPvsar(H)f(Srv, Pap)

ar(H)Pap + kr(H)f(Srv, Pap)
. (2.24)

2.4 Opening and Closing of the Heart Valves

In this section, we will model the opening and closing of the heart valves in the left

heart, namely, the mitral and the aortic valves. In order to model the left ventricle

as a pump, the opening and closing of the mitral and aortic valves must be included.

During the diastole, the mitral valve opens allowing the blood to flow to the left

ventricle while the aortic valve is closed. Then the heart muscles start to contract,

increasing the pressure in the left ventricle. When the left ventricular pressure ex-

ceeds the aortic pressure, the aortic valve opens, propelling the pulse wave through

the vascular system (cf. Olufsen et. al (2005) [39]).

Rideout (1991) [47] originally proposed a model of the succession of opening and

closing of these heart valves. A piecewise continuous function was later developed

by Olufsen et al., see for example [39] and [46]. This function represents the vessel
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resistance which characterized the “open” valve state using a small baseline resis-

tance and the “closed” state using a value of larger magnitudes. The time-varying

resistances are given as

Rmv(t) = min
(
Rmv,open + e(−2(Pvp(t)−P`v(t))), 10

)
,

Rav(t) = min
(
Rav,open + e(−2(P`v(t)−Psa(t))), 10

)
,

(2.25)

where Rmv(t) and Rav(t) are the time varying mitral valve and aortic valve resis-

tances, respectively. The first equation suggests that when P`v(t) < Pvp(t), the

mitral valve opens and the blood enters the left ventricle. As P`v(t) increases and

becomes greater than Pvp(t), the resistance exponentially grows to a large value. A

similar remark can be deduced from the second equation. The value 10 is chosen

to ensure that there is no flow when the valve is closed and remains there for the

duration of the closed valve phase. The open and closed transition is not discrete.

An exponential function is used for the partially opened valve, with the amount of

“openness” (cf. Olufsen et. al (2009) [46]).

For simplicity purposes, one can assume that the time dependent resistances

Rmv(t) and Rav(t) are given by

Rmv(t) =

 ∞ for P`v(t) > Pvp(t) ,

Rmv,open for P`v(t) ≤ Pvp(t) ,

Rav(t) =

 ∞ for P`v(t) < Psa(t) ,

Rav,open for P`v(t) ≥ Psa(t) .

(2.26)

This means that when the left ventricular pressure is greater than the venous

pulmonary pressure (i.e., P`v(t) > Pvp(t)), the mitral valve resistance is so large that

flow to the left ventricle is impossible. This is the state when the mitral valve is

closed. As soon as the left ventricular pressure reaches the venous pulmonary pres-

sure, the mitral valve opens and the blood flows to the left ventricle. In this case, the

mitral valve resistance is assumed to be a constant value. The mitral valve remains

open as long as left ventricular pressure is less than the venous pulmonary pressure.

Similarly, when the left ventricular pressure is less than the pressure in the aorta,

the aortic valve is closed and its resistance is too large making the blood flow to
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the systemic aorta compartment impossible. When left ventricular pressure reaches

the systemic aortic pressure, the aortic valve opens and remains open as long as it

exceeds the systemic aortic pressure. Here, the blood flows from the left ventricle to

the systemic aorta compartment with the aortic resistance assumed to be constant

during this duration. This time-varying resistance formulation expressed in (2.26)

is used in our numerical simulations.

2.5 Time-Varying Elastance Function

The slope of a pressure-volume curve which has pressure on the y-axis and volume

on the x-axis is called the ventricular elastance or simply the elastance. It is a mea-

sure of “stiffness” of the ventricles. Elastance and compliance are inverse of each

other.

According to Ottesen et al. (2004) [41], the relationship between the left ven-

tricular pressure P`v and the stressed left ventricular volume V`v(t) is described by

P`v(t) = E`v(t) (V`v(t)− Vd) , (2.27)

where E`v(t) is the time-varying ventricular elastance and Vd (constant) is the ven-

tricular volume at zero diastolic pressure (or simply the unstressed left ventricular

volume).

In [46], the time-varying elastance function E`v(t) is given by

E`v(t) =



Em +
EM − Em

2

[
1− cos

(
πt

TM

)]
, 0 ≤ t ≤ TM

Em +
EM − Em

2

[
cos

(
π

Tr
(t− TM)

)
+ 1

]
, TM ≤ t ≤ TM + Tr

Em, TM + Tr ≤ t < T .

(2.28)

This is a modification of a model developed by Heldt et al. (2002) [17]. Here, TM

denotes the time of peak elastance, and Tr is the time for the start of diastolic

relaxation. These are both functions of the length of the cardiac cycle T . These
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parameters are set up as fractions where TM,frac = TM/T and Tr,frac = Tr/T . More-

over, Em and EM are the minimum and maximum elastance values, respectively.

The above elastance function (2.28) is sufficiently smooth. Its derivative can be

easily computed as follows

dE`v(t)

dt
=



EM − Em
2

[
π

TM
sin

(
πt

TM

)]
, 0 ≤ t ≤ TM

EM − Em
2

[
− π

Tr
sin

(
π

Tr
(t− TM)

)]
, TM ≤ t ≤ TM + Tr

0, TM + Tr ≤ t < T .

(2.29)

Below is a figure showing the left ventricular time-varying elastance as given in

(2.28).

Figure 2.4: The left ventricular time-varying elastance function E`v(t) during

one cardiac cycle (60/70 sec).

In our model, further modifications of the elastance function in (2.28) have been

done. The maximum elastance EM can be interpreted as a measure of the contractile

state of the ventricle, see Palladino (2002) [42] and Sunagawa and Sagawa (1982) [52].

For the normal resting heart, EM can be a constant parameter . However, during

exercise phase, the contractility of the heart muscles may vary and could depend

on the heart rate. That is, an increase in heart rate may result in an increased

ventricular elastance. Thus we considered EM as a function dependent on the heart
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rate H. Such function must be positive-valued, bounded and continuous. We chose

the Gompertz function for EM(H), a sigmoidal function given by

EM(H) = a exp(−b exp(−cH)) , (2.30)

where a, b, c are positive constants. Figure 2.5 shows the maximum elastance using

Gompertz function with varying constants a, b and c. The constant a determines

the upper bound of the function, b shifts the graph horizontally and c is the measure

of the steepness of the curve.

Figure 2.5: The maximum elastance EM expressed in terms of Gompertz func-

tion with varying values for constants a, b and c.

In Ottesen (2004) [41] and Olufsen et al. (2009) [46], EM = 2.49 [mmHg/mL].

Figure 2.6 depicts the maximum elastance curve where constants a, b and c were

estimated obtaining EM = 2.4906 [mmHg/mL] at H = 70/60 beats per second.
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Figure 2.6: The maximum elastance EM expressed as a sigmoidal function de-

pendent on the heart rate H.

Since, EM is now H-dependent, TM which is the time of peak elastance should

be H-dependent as well. We considered TM as the time for systolic duration which

is defined by the Bazett’s formula given by

TM =
κ

H1/2
, (2.31)

where κ is the same constant introduced in equation (2.15). Figure 2.7 depicts

the elastance function with varying heart rates. As the heart rate increases, the

maximum elastance value increases as well. Notice also the decrease in the time for

peak elastance and the smaller support of the elastance curve.

2.6 Local Regulation Process and Autoregulation

In this section, we will model the local metabolic control and autoregulation pro-

cesses. In particular, we will consider only the case of exercise below the anaerobic

threshold. Thus, the amount of energy consumed by the muscles is equal to the

aerobic energy supply. For an elaborate discussion of exercise physiology refer to

Falls (1968) [9] and Rowell (1993) [48].
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Figure 2.7: The elastance function with varying heart rates.

Let us start modeling the metabolic control. Let the metabolic rate for the

tissue region MT be partially satisfied by the O2 supply provided by the blood flow

in the tissue region and partially by anaerobic biochemical reactions providing an

anaerobic energy flow Mb. As in Kappel and Peer (1993) [26] and related works, we

have the relation

MT = F ∗sp (Ca,O2 − Cv,O2) +Mb , (2.32)

where F ∗sp denotes the blood flow in the arterial systemic region, Ca,O2 denotes the

concentration of O2 in the arterial blood which is assumed to be constant and Cv,O2

is the concentration of O2 in the venous blood in the capillary region. This is a

modification of Fick’s law for basic energy (oxygen) balance equation. Incorporated

here is the energy source provided by ATP (adenosine triphosphate) and creatine

phosphate which is tapped during periods of exercising (aerobic oxidation). More-

over, for the biochemical energy flow, we assume that it is directly proportional to

the rate of change of Cv,O2 ,

Mb = −K d

dt
Cv,O2 , (2.33)

where K is a positive constant. Equation (2.33) suggests that a positive amount of

Mb is supplied whenever Cv,O2 is lowered.
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In order to model the cardiovascular system response to a constant ergometric

workload W imposed on a test person on a bicycle ergometer, the following empirical

formula for the metabolic rate is used

MT = M0 + ρW , (2.34)

where M0 is the metabolic rate in the systemic tissue region corresponding to zero

workload and ρ is a positive constant.

In any tissue of the body, an increase in the arterial pressure causes an increase

in the blood flow as well. However, in most tissue, the blood flow returns to the

normal level in less than a minute, though the arterial pressure remains elevated.

The return of blood flow toward normal is called autoregulation of blood flow.

Autoregulation will be considered as one of the fundamental regulation mecha-

nisms in our model. This plays an important role during phases of exercising. The

role of autoregulation is to guarantee a sufficient blood flow in the relevant tissues.

The most efficient way to increase the blood flow in a tissue region locally is to

increase the diameter of the arterioles in that region. These would in turn, decrease

the resistance to blood flow. Thus, autoregulation can be accomplished essentially

by decreasing the resistance in the relevant tissue. Also, in general, local dilation of

the arterioles is influenced by substances which are set free locally due to increased

functional activity of the organ or tissue region (functional activation). This mech-

anism is supported by a local metabolic regulation, where by-products of the local

metabolism cause dilation of the arterioles. Following Peskin (1981) [44] we have

Rsp = ApeskCv,O2 , (2.35)

where Apesk is a positive constant.

In our model, we do not consider an autoregulation mechanism in finger arteries.

This is due to the idea that in an ergometer bicycle test, the arms are held in a

fixed position. And therefore, not directly involved in an exercise activity. Hence,
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instead of using equation (2.5) for the systemic peripheral flow, we use

F ∗sp =
1

Rsp

(Pas − Pvs) . (2.36)

Differentiating (2.35) and combining it with equations (2.36), (2.32) and (2.33),

we obtain the following differential equation for Rs:

dRsp

dt
=

1

K

(
Apesk

((
Pas − Pvs
Rsp

)
Ca,O2 −MT

)
− (Pas − Pvs)

)
. (2.37)

2.7 The Contractility of the Right Ventricle

Since our modeling effort is directed towards describing the reaction of the cardio-

vascular system to an ergometric workload, we need to include the regulation of the

heart rate and the contractilities of the ventricle in response to the activity. We will

not model the baroreceptor in detail. The idea is to construct a feedback control

regulating the heart rate in dependence of the the arterial systemic pressure. We

assume that the contractilities vary according to variations in the heart rate.

There is a heart mechanism called the Bowditch effect. It roughly states that

changing the heart rate causes a concordant change in the ventricular contractilities

(cf. Levick (2003) [32]). For further details concerning Bowditch effect refer to

Franz, et al. (1983) [11], Seed and Walker (1988) [51] and Wohlfart (1979) [56].

In this study, we adapted the model presented in Batzel et al. (2007) [2] (see

also [26]) where sympathetic and parasympathetic activities were not considered

directly. Thus, the variations of the contractilities can be described by the following

second order differential equation

d2Srv
dt2

+ γrv
dSrv
dt

+ αrvSrv = βrvH , (2.38)

where αrv, βrv and γrv are constants, and αrv, βrv > 0. This set-up guarantees that

the contractility Srv varies in the same direction as the heart rate H. Introducing

the state variable σrv = dSrv

dt
and transforming (2.38) into systems of first order

differential equations, we have

dSrv
dt

= σrv ,

dσrv
dt

= −αrvSrv − γrvσrv + βrvH .

(2.39)



Chapter 3

Basic Concepts in Control Theory

This chapter will provide the basic concepts in control theory specifically the linear

control systems in finite dimensional state spaces. In particular, time-invariant

control systems will be presented. The proofs and further details of the theorems

are not presented but instead referred to in some literatures. Main references for this

material are from unpublished notes on control theory by Kappel (2005) [23], PhD

thesis by Timischl (1998) [54] and the book on Linear Optimal Control Systems by

Kwakernaak and Sivan (1972) [30]. Other relevant references are mentioned during

the discussion.

3.1 Linear Control Systems

Let us start by giving a mathematical definition of a linear control system.

Definition 3.1.1 Let A(t) ∈ Rn × Rn, B(t) ∈ Rn × Rp and C(t) ∈ Rk × Rn

be defined on an interval I. A linear control system is given by the following

equations:

dx(t)

dt
= A(t)x(t) +B(t)u(t) , (3.1)

y(t) = C(t)x(t) , (3.2)

where x(t) ∈ Rn, u(t) ∈ Rp and y(t) ∈ Rk for t ∈ I. The interval I can be a closed

interval, I = [t0, te], t0 < te < ∞ or I = [t0,∞). The elements of the matrices

35
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A(·), B(·) and C(·) are assumed to be in L 2(I;R).

In the above definition, t denotes the time variable where t ∈ I and x(t) is called

the state or the response of the system at time t. The function u(t) is called

the input respectively the control of the system and u(·) is assumed to be in

L 2(I;Rp). Equation (3.1) is called the state equation for the system. If an initial

value x0 ∈ Rn and input u(·) ∈ L 2(I;Rp) are given, then (3.1) has a unique solution

x(·) in the sense of Caratheodory, that is, x(·) is absolutely continuous on I with

x(t0) = x0 and the derivative of x(·) exists almost everywhere on I and is a function

in L 2(I;Rn). Moreover, equation (3.1) is satisfied a.e. on I. In general, if we know

u(·) which characterizes the external influence on the system, then we can think of

the state of a system as a quantity which provides the necessary information needed

in order to predict the future behavior of the system. Once the solution x(·) of (3.1)

with initial value x0 is obtained, equation (3.2) determines y(·) ∈ L 2(I;Rk), which

is called the output of the system. Generally speaking, we do not have access to

the state x(·) itself but only to some function of the state. The coordinates of y(·)
can be thought of as those quantities of the system that we can measure.

Figure 3.1 represents a diagram for an idealized situation of a control system.

However, in practice, we have to distinguish between the system (or plant) and the

model for the system, which is given by equations (3.1) and (3.2). A real situation

is depicted in Figure 3.2. Of course, it is expected that the model describes the

dynamics of the system sufficiently well, so that the input-output behavior of the

model is sufficiently close to that of the system.

u(·) y(·)outputinput system (plant)
state x(·)

Figure 3.1: An idealized diagram of a control system.
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u(·)input system (plant)

x(·)

system output

model

ysystem(·)

ymodel(·)
model output

Figure 3.2: The control system.

There are some generalizations of equations 3.1 and 3.2 which we will provide

but will not be given much emphasis. For example, in Dai (1989) [8], instead of

(3.1) the following equation has been adapted:

E(t)
dx(t)

dt
= A(t)x(t) +B(t)u(t), t ∈ I , (3.3)

where E(t) is an n×n matrix which is non-invertible everywhere on I. Such systems

are called linear descriptor systems or linear singular control systems. Basically,

descriptor systems arise when there is an added (linear) constraint for the state

variables. Also, a more general form of the output equation (3.2) is

y(t) = C(t)x(t) +D(t)u(t), t ∈ I . (3.4)

This is a scenario which reflects the input influencing the output directly (see for

instance Brockett (1969) [5]).

In systems theory, system (3.1) and (3.2) is called a linear continuous-time system

(or control system). The time-set for such a system is a bounded or an unbounded

closed interval in R. Another important class of systems are discrete-time systems,

where the time-set is a finite sequence, t0 < t1 < · · · < te, or infinite sequence,

t0 < t1 < · · · and equations (3.1) and (3.2) are replaced by

x(tk+1) = A(tk)x(tk) +B(tk)u(tk), k = 1, 2, . . . ,

y(tk) = C(tk)x(tk), k = 0, 1, . . . .
(3.5)

For discrete-time systems theory, we refer to the literature for instance Kwakernaak

and Sivan (1972) [30], Chapter 6.
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For our discussion purposes, we will focus primarily on the linear time-invariant,

continuous systems. This is a special case of the system characterized by equa-

tions (3.1) and (3.2) where the matrices A,B, and C are constant in time. Thus we

have

dx(t)

dt
= Ax(t) +Bu(t), t ∈ R , (3.6)

y(t) = Cx(t), t ∈ R . (3.7)

This time, we will present the basic theorems on the solution of the state equa-

tion (3.1) including the transition matrix and diagonlization. For detailed discus-

sions and proofs, we refer to Kwakernaak and Sivan (1972) [30] and Luenberger

(1979) [33].

Theorem 3.1.2 Consider the linear homogeneous system of the form

dx(t)

dt
= A(t)x(t) . (3.8)

If the elements of the matrix A(t) are continuous functions of t, then the system (3.8)

always has a solution corresponding to a given initial state vector, x(t0). The solution

can be expressed as

x(t) = Φ(t, t0)x(t0), for all t . (3.9)

The transition matrix Φ(t, t0) is the solution of the matrix differential equation

dΦ(t, t0)

dt
= A(t)Φ(t, t0), for all t ,

Φ(t0, t0) = I ,

(3.10)

where I is the n-dimensional identity matrix.

Below is a theorem listing the properties of a transition matrix.

Theorem 3.1.3 The transition matrix Φ(t, t0) of the state equation (3.1) has the

following properties:

1. Φ(t2, t1)Φ(t1, t0) = Φ(t2, t0) for all t0, t1, t2;

2. Φ(t, t0) is nonsingular for all t, t0;
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3. Φ−1(t, t0) = Φ(t0, t) for all t, t0;

4.
dΦT (t0, t)

dt
= −AT (t)ΦT (t0, t) for all t, t0,

where the superscript T denotes the transpose.

Once the transition matrix is obtained, solutions to the state equation (3.1) can

easily be found. This is provided in the next theorem.

Theorem 3.1.4 The solution of the state equation (3.1) is

x(t) = Φ(t, t0)x(t0) +

∫ t

t0

Φ(t, τ)B(τ)u(τ) dτ , (3.11)

for all t provided that A(t) is continuous and B(t) and u(t) are piecewise continuous

for all t.

The transition matrix for the linear time-invariant system has an explicit form.

Theorem 3.1.5 The linear time-invariant system

dx(t)

dt
= Ax(t) (3.12)

has the transition matrix

Φ(t, t0) = eA(t−t0) , (3.13)

where the exponential of a square matrix M is defined via the series

eM = I +M +
1

2!
M2 +

1

3!
M3 + · · · (3.14)

which converges for all M .

An explicit form of the transition matrix for the linear time-invariant system can

be obtained by diagonalization of A.

Theorem 3.1.6 Suppose that the constant n× n matrix A has n distinct eigenval-

ues λ1, λ2, . . . , λn and corresponding eigenvectors e1, e2, . . . , en. Let us define n× n
matrices:

T = (e1, e2, · · · , en) , (3.15)

Λ = diag (λ1, λ2, · · · , λn) . (3.16)
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That is, the matrix T consists of the eigenvectors of A as columns and the matrix

Λ is a diagonal matrix whose diagonal elements are the eigenvalues of A. Then the

following holds:

1. T is nonsingular and A can be represented as

A = TΛT−1 . (3.17)

Equivalently, T diagonalizes A, that is, T−1AT = Λ.

2. The transition matrix has the form

Φ(t) = eAt = TeΛtT−1 and eΛt = diag
(
eλ1t, eλ2t, · · · , eλnt

)
(3.18)

3. The solution of (3.12) can be written as

x(t) =
n∑
i=1

µie
λitei , (3.19)

where the scalars µi depend on the initial condition x(0) via (µ1, µ2, . . . , µn)T =

T−1x(0).

Item 3 of the above theorem shows that the response x(t) of the linear time-

invariant system (3.12) is a composition of motions along the eigenvectors of A.

Such motions are called modes of the system. If an initial state x(0) is chosen to

lie in the direction of one eigenvector, the whole motion will stay along that direc-

tion. In general, a particular mode is excited by choosing the initial state to have a

component along the corresponding eigenvector.

It can also be noted from the above theorem that the transition matrix can be

facilitated by diagonalizing the matrix A. If A does not have n linearly independent

eigenvectors it cannot be diagonalized but it can be brought into the so-called Jordan

normal form from which the transition matrix can be found. The response x(t) of

the linear time-invariant system (3.12) may contain aside from purely exponential

terms of the form eλit also terms of the form teλit, t2eλit, . . . and so on (refer to

Kwakernaak and Sivan (1972) [30] for details).
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3.2 Stability

In this section we will discuss the overall time behavior of a system. We are interested

in whether or not the solutions of the state equation tend to grow indefinitely as

t → ∞. For simplicity, let us assume that we are dealing with an autonomous

system . Such a system has no input u(t) or more precisely, a system where u is a

fixed function of time. Thus we will consider differential equations of the form

dx(t)

dt
= f(x(t)) . (3.20)

Let us introduce a nominal solution x0(t) satisfying the differential equa-

tion (3.20). If x0(t) = xe, a constant, then it is said to be an equilibrium state of

the system.

Definition 3.2.1 Let x(t) be an arbitrary solution to the differential equation (3.20).

The nominal solution x0(t) of (3.20) is asymptotically stable if the following

holds:

1. It is stable in sense of Lyapunov, that is, for any t0 and any ε > 0 there

exists a δ(ε) (could depend on t0) such that

‖x(t0)− x0(t0)‖ ≤ δ implies ‖x(t)− x0(t)‖ < ε for all t ≥ t0 . (3.21)

2. For all t0 there exists a ρ > 0 (could depend on t0) such that

‖x(t0)− x0(t0)‖ < ρ implies ‖x(t)− x0(t)‖ −→ 0 as t −→∞ . (3.22)

Moreover, if the nominal solution satisfies item 1 and for any x(t0) and any t0

‖x(t)− x0(t)‖ −→ 0 as t −→∞ , (3.23)

then it is said to be asymptotically stable in the large.

From the above definition, ‖x‖ denotes the norm of a vector x. Any norm is

possible because all norms are equivalent in Rn. In particular, one can use the

Euclidean norm

‖x‖ =

√√√√ n∑
i=1

x2
i . (3.24)
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Stability in the sense of Lyapunov guarantees that if the initial state is chosen

close enough to the nominal solution, the state does not depart too far from the

nominal solution. Asymptotic stability, in addition to stability in the sense of Lya-

punov, implies that the solution always approaches the nominal solution provided

that the initial deviation is within a certain region. Finally, asymptotic stability in

the large implies that all other solutions eventually approach the nominal solution

regardless of the choice of the initial condition.

Definition 3.2.2 The linear homogeneous system (3.8) is stable in a certain sense

(of Lyapunov, asymmptotically or asymptotically in the large), if the zero solution

x0 ≡ 0 is stable in that sense.

For any linear system, asymptotic stability and asymptotic stability in the large is

the same since solutions may be scaled up or down without changing their behavior.

Theorem 3.2.3 The linear homogeneous system (3.8) is asymptotically stable if

and only if it is asymptotically stable in the large.

Definition 3.2.4 The linear homogeneous system (3.8) is exponentially stable

if there exist positive constants α and β such that for any initial state x(t0),

‖x(t)‖ ≤ αe−β(t−t0) ‖x(t0)‖ , t ≥ t0 . (3.25)

It can be inferred from the definition above that a system which is exponentially

stable has the property that the state converges exponentially to the zero state no

matter what the initial state is.

For the following material we will provide basic theorems and definitions that

establish under what conditions linear time-invariant system possess any forms of

stability we have presented.

It is clear from item 3 of Theorem 3.1.6 that the stability of the system is

determined by the eigenvalues λi of A.

Theorem 3.2.5 The linear time-invariant system (3.12) is stable in sense of Lya-

punov if and only if
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1. all the eigenvalues of A have nonpositive real parts, and

2. to any eigenvalue on the imaginary axis with multiplicity m there correspond

exactly m eigenvectors of the matrix A.

The second condition of the theorem prevents the terms that grow as tk. If A has

no multiple characteristic values on the imaginary axis then this condition is always

satisfied. The next theorem is for asymptotic stability.

Theorem 3.2.6 The linear time-invariant system (3.12) is asymptotically stable if

and only if all the eigenvalues of A have strictly negative real parts.

Notice that it is the matrix A that determines whether a linear time-invariant

system is asymptotically stable. Thus we can have the following definition:

Definition 3.2.7 The n×n matrix A is asymptotically stable if all its characteristic

values have strictly negative real parts.

It can be shown that the state space of a linear time invariant system can be

decomposed into two subspaces in which the response of the system from an initial

state in the first subspace always converges to zero state while the response from a

nonzero initial state in the other subspace diverges.

Definition 3.2.8 Consider the linear time-invariant system (3.12). Suppose that

A has distinct eigenvalues. We define the stable subspace for this system as the

real linear subspace spanned by the eigenvectors of A corresponding to eigenvalues

with strictly negative real parts. Similarly, the unstable subspace for this system

is the real subspace spanned by the eigenvectors of A corresponding to eigenvalues

with nonnegative real parts.

A similar decomposition can be extended to a more general linear time-invariant

systems, particularly for nondiagonalizable matrix A. As a consequence of this

definition, the whole Rn can be expressed as the direct sum of the stable and the

unstable subspace.
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3.3 Controllability (Reachability)

One basic question concerning a control system is, in what way can it be influenced

by choosing appropriate controls u? Specifically, we want to know whether or not

a given system can be steered from any given initial state to any other given final

state. This leads to the following definition of controllability.

Definition 3.3.1 Suppose the control system is given by equations (3.1) and (3.2).

1. Given x0, x1 ∈ Rn and t0 ∈ I, an interval defined in 3.1.1. The state x0 at

time t0 is controllable to x1, if and only if there exists a time t1 > t0 and a

control function u ∈ L 2 ([t0, t1] ;Rp) such that x(t1) = x1.

2. Control system (3.1), (3.2) is completely controllable at t0, if and only if

every state x0 ∈ Rn is at time t0 ∈ I controllable to any state x1.

Another concept related to controllability is reachability. A state x1 at time

t1 ∈ I is said to be reachable from x0 if and only if there exists a t0 < t1, t0 ∈ I and

a control function u ∈ L 2 ([t0, t1] ;Rp) such that x(t1) = x1. Moreover, the control

system (3.1), (3.2) is completely reachable at time t1 if and only if every x1 ∈ Rn

is at t1 ∈ I reachable from every other state x0.

The following is a characterization of controllability:

Theorem 3.3.2 Consider the control system (3.1), (3.2). Let us introduce the con-

trollability Grammian of system as

W (t0, t1) =

∫ t1

t0

Φ(t0, τ)B(τ)B(τ)TΦ(t0, τ)T dτ . (3.26)

1. A state x0 ∈ Rn at time t0 ∈ I is controllable to the other state x1 if and only

if there exists a t1 > t0 such that

x0 − Φ(t0, t1)x1 ∈ rangeW (t0, t1) . (3.27)

2. The control system (3.1), (3.2) is completely controllable at t0 if and only if

there exists a t1 > t0 such that

rankW (t0, t1) = n (or equivalently rangeW (t0, t1) = Rn) . (3.28)
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The corollary below is an offspring of the above theorem:

Corollary 3.3.3 1. The control system (3.1), (3.2) is completely controllable if

and only if there exists a t1 > t0 such that for any x0, x1 ∈ Rn, a control

u ∈ L 2 ([t0, t1] ;Rp) can be found such that the trajectory of the system corre-

sponding to u and originating from x0 at time t0 reaches x1 at time t1.

2. Suppose that x0 can be controlled to 0 at time t0 and let y ∈ Rn be an element

with W (t0, t1)y = x0. Then a control

u(t) = −B(t)TΦ(t0, t)
Ty, t0 ≤ t ≤ t1 , (3.29)

steers x0 to 0 in the interval [t0, t1] .

Now, we will consider controllability issues for linear time-invariant continuous

system given by equations (3.6), (3.7).

Theorem 3.3.4 Consider the control system (3.6).

1. A state x0 at time 0 (or at any time t0 ∈ R) is controllable to zero if and only

if

x0 ∈ range
(
B,AB, . . . , An−1B

)
. (3.30)

2. The linear time-invariant system (3.6) is completely controllable at any time

t0 ∈ R if and only if

rank
(
B,AB, . . . , An−1B

)
= n . (3.31)

The pair (A,B) is said to be controllable if the rank condition of item 2 of the

above theorem is satisfied. Also, note from the theorem that controllability for the

time-invariant linear system is independent of t0 and t1. Thus, it can also be ex-

pected that in the above theorem, ‘(completely) controllable’ can be replaced by

‘(completely) reachable’.

The subspace

range
(
B,AB, . . . , An−1B

)
=

n−1∑
i=0

rangeAiB (3.32)



3.3. Controllability (Reachability) 46

is called the controllable subspace for system (3.6).

Below is an interesting criterion for the controllability of a pair (A,B) established

by Hautus (1969) in [16].

Theorem 3.3.5 Suppose A ∈ Rn×n and B ∈ Rn×p are given. The pair (A,B) is

controllable if and only if pTB 6= 0 for any eigenvector (real or complex) p of AT .

A state transformation can be found representing the system in a canonical form

which exhibits the controllability of the system.

Theorem 3.3.6 Consider the linear time-invariant system (3.6). Form a nonsin-

gular transformation matrix T = (T1, T2) where the columns of T1 form a basis for

the m-dimensional (m ≤ n) controllable subspace of (3.6), i.e., T1 = (e1, e2, · · · , em),

and the column vectors of T2 together with those of T1 form a basis for the whole

n-dimensional space, i.e., T2 = (em+1, em+2, · · · , en). Define a transformed state

variable x̃(t) by

x̃(t) = T−1x(t) . (3.33)

Then the state equation (3.6) is transformed into the controllability canonical

form expressed as

dx̃(t)

dt
=

 Ã11 Ã12

0 Ã22

 x̃(t) +

 B̃1

0

u(t) , (3.34)

where Ã11 ∈ Rm×m, Ã12 ∈ Rm×(n−m), Ã22 ∈ R(n−m)×(n−m), B̃1 ∈ Rm×p, and the pair

(Ã11, B̃1) is completely controllable.

Remarks: Since T1 and T2 can freely be chosen to some extent, the control-

lability canonical form is not unique. But no matter how the transformation is

chosen, the eigenvalues of Ã11 are the same, respectively Ã22. The eigenvalues of

Ã11 are referred to as the controllable poles of the system, while the eigenvalues of

Ã22 are the uncontrollable poles. Suppose that the eigenvalues of system (3.47) are

distinct. Then the its controllable subspace is spanned by the eigenvectors corre-

sponding to the controllable poles of the system. Consequently, the uncontrollable
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subspace of the system is the subspace spanned by the eigenvectors corresponding

to the uncontrollable poles of the system.

3.4 Stabilizability

Suppose that some of the eigenvalues of the matrix A of the linear time-invariant

system (3.6) have nonnegative real parts. The question now is, can we find a con-

trol function u(t) capable of steering the response of the linear time-invariant sys-

tem (3.6) to the zero state? In order to control the system, it must be required that

the unstable component can be completely controlled. Obviously, if the system is

completely controllable, then it can be steered to the zero state. Thus we have the

following definition:

Definition 3.4.1 Consider the linear time-invariant system (3.6).

1. It is stabilizable if its unstable subspace is contained in its controllable sub-

space.

2. The pair (A,B) is stabilizable if the system (3.6) is stabilizable.

Theorem 3.4.2 Any asymptotically stable linear time-invariant system is stabiliz-

able. Also, any completely controllable system is stabilizable.

The stabilizability of a system can be verified when the state differential equation

is in controllability canonical form.

Theorem 3.4.3 Consider the linear time-invariant system (3.6). Suppose that it

is transformed into the controllability canonical form as in equation (3.47) given in

Theorem 3.3.6 where the pair (Ã11, B̃1) is completely controllable. Then the sys-

tem (3.6) is stabilizable if and only if the matrix Ã22 is asymptotically stable.

3.5 Reconstructibility (Observability)

In this section we are interested in which information on the state we can obtain

by observing the output y(·) of the system on some time interval. That is, we will
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discuss the problem whether it is possible to determine from the behavior of the

output what the behavior of the state is.

Definition 3.5.1 Consider the linear control system given by equations (3.1), (3.2).

1. A state x0 ∈ Rn is non-reconstructible at time t0 ∈ I if and only if there

exists a t1 ∈ I where t1 < t0 such that for all t ∈ [t1, t0] and u ∈ L 2 ([t1, t0] ;Rp)

C(t)x (t; t0, x0, u(·)) = C(t)x (t; t0, 0, u(·)) . (3.35)

2. The control system (3.1),(3.2) is said to be completely reconstructible at

time t0 ∈ I if and only if 0 is the only state which is non-reconstructible at

time t0.

Analogously, the notions of non-observable and completely observable are defined

as follows: A state x0 ∈ Rn is non-observable at time t0 ∈ I if and only if there

exists a t1 ∈ I where t1 > t0 such that for all t ∈ [t0, t1] and u ∈ L 2 ([t0, t1] ;Rp)

C(t)x (t; t0, x0, u(·)) = C(t)x (t; t0, 0, u(·)). The control system (3.1),(3.2) is com-

pletely observable at time t0 ∈ I if and only if 0 is the only state which is

non-observable at time t0.

Using the transition matrix representation, equation (3.35) can be written as

C(t)Φ(t, t0)x0 = 0, t ∈ [t1, t0] . (3.36)

For t0, t1 ∈ I, t1 < t0, we define the mapping Ct0,t1 : Rn → L 2
(
[t1, t0] ;Rk

)
by

Ct0,t1x = C(·)Φ(·, t0)x, x ∈ Rn . (3.37)

With this, condition (3.35) is equivalent to

x0 ∈ ker Ct0,t1 . (3.38)

If a complementary subspace X of ker Ct0,t1 is chosen, i.e., Rn = X ⊕ ker Ct0,t1 , then

any state x0 ∈ Rn has a unique representation as x0 = x01 + x02 where x01 ∈ X

and x02 ∈ ker Ct0,t1 . Thus, we can say that the component x01 is reconstructible in

the following sense: If for some t∗ < t0, y(t) = Cx(t; t0, x01, 0) = 0 on [t∗, t0], then
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x01 = 0. Linearity of the system could be stated as follows: Suppose x0, x1 are two

states of the system. If for some t∗ < t0, t ∈ [t∗, t0] and for all u ∈ L 2 ([t∗, t0] ;Rp),

we have Cx(t; t0, x0, u(·)) = Cx(t; t0, x1, u(·)), then x1 − x0 ∈ ker Ct0,t1 . Since a

special complementary subspace for ker Ct0,t1 is (ker Ct0,t1)⊥, we have the following

definition: A state x0 ∈ Rn is reconstructible at time t0 ∈ I if and only if there

exists a t1 ∈ I where t1 < t0 such that x0 ∈ (ker Ct0,t1)⊥.

Remark: In view of the above arguments, ‘reconstructible’ is not the negation

of ‘non-reconstructible’.

Theorem 3.5.2 Consider the control system (3.1), (3.2). Let us introduce the re-

constructibility Grammian of the system as

H(t0, t1) =

∫ t0

t1

Φ(τ, t0)TC(τ)TC(τ)Φ(τ, t0) dτ . (3.39)

1. A state x0 at time t0 is non-reconstructible if and only if there exists a t1 ∈ I
where t1 < t0 such that

x ∈ kerH(t0, t1) . (3.40)

2. The control system (3.1), (3.2) is completely reconstructible at t1 ∈ I if and

only if there exists a t0 ∈ I where t0 < t1 such that

rankH(t0, t1) = n (or equivalently rangeH(t0, t1) = Rn) . (3.41)

Let us now turn to the reconstructibility of linear time-invariant control systems.

Theorem 3.5.3 Consider the control system given by (3.6), (3.7).

1. A state x0 ∈ Rn is non-reconstructible at time t0 (or at any time) if and only

if

x0 ∈ ker C . (3.42)

2. The control system (3.6), (3.7) is completely reconstructible at some time t0

(or at any time) if and only if

rank C = n . (3.43)
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Remarks: For time-invariant systems the notion ’non-reconstructible’ is equiv-

alent to ‘non-observable’ and similarly, ‘completely reconstructible’ is equivalent to

‘completely observable’. The pair (C,A) is said to be observable if and only if con-

dition (3.42) is satisfied. The subspace ker C is called the unobservable subspace

for the linear time-invariant system (3.6), (3.7).

Now, let us consider the structure of a linear time-invariant system which is not

completely observable. For such systems, it is impossible to establish uniquely from

the output what the state of the system is. We are interested to know what uncer-

tainty remains. The following is a characterization of an unobservable subspace.

Theorem 3.5.4 The unobservable subspace of the linear time invariant system sys-

tem (3.6),(3.7) is the kernel (null space) of the observability matrix

Q =



C

CA

CA2

...

CAn−1


. (3.44)

Unobservable subspace can be clarified by the following result:

Theorem 3.5.5 Suppose that the output y(t) and the input u(t) of the linear time-

invariant system (3.6), (3.7) are known over an interval t0 ≤ t ≤ t1. Then the

initial state of the system at time t0 is determined by the addition of an arbitrary

vector from the unobservable subspace.

Analogous to Theorem 3.3.6, we can obtain an observability canonical form for

the linear time-invariant system.

Theorem 3.5.6 Consider the linear time-invariant system (3.6), (3.7). Form a

nonsingular transformation matrix U = (U1, U2)T where the m rows of U1 form a

basis for the m-dimensional (m ≤ n) subspace spanned by the rows of the observ-

ability matrix of the system. The n −m rows of U2 form together with the m rows
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of U1 a basis for the whole n-dimensional space. Define a transformed state variable

x̃(t) by

x̃(t) = Ux(t) . (3.45)

Then in terms of the transformed state variable the system is represented in the

observability canonical form

dx̃(t)

dt
=

 Ã11 0

Ã21 Ã22

 x̃(t) +

 B̃1

B̃2

u(t) , (3.46)

y(t) = (C̃1, 0)x̃(t) , (3.47)

where Ã11 ∈ Rm×m, Ã21 ∈ R(n−m)×m, Ã22 ∈ R(n−m)×(n−m), C̃1 ∈ Rk×m, and the pair

(C̃1, Ã11) is completely observable.

3.6 Detectability

In the preceding section, we noted that if the linear time-invariant system is not

observable, there is always an uncertainty about the actual state of the system. Also,

to any possible state, we can always add an arbitrary vector from the unobservable

subspace (see Theorem 3.5.5). For such situations, the best one can hope for is

that for any state in the unobservable subspace, the zero input response of the

system converges to zero. Thus in this case, any state in the unobservable subspace

is also in the stable space. Hence, whatever the unobservable component of the

state is guessed, the error will not grow infinitely. This leads to the definition of

detectability.

Definition 3.6.1 The linear time-invariant system (3.6), (3.7) is detectable if

and only if its unobservable subspace is contained in its stable subspace.

The following theorem is a consequence of the definition:

Theorem 3.6.2 Any asymptotically stable system of the form given by equations

(3.6), (3.7) is detectable. Any completely observable system of the form given by

equations (3.6), (3.7) is detectable.
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In the following sections we will discuss the importance of choosing appropri-

ate controls. As given in Corollary 3.3.3, for system (3.1), (3.2) a state x0 at

time t0 can be steered to the state 0 at a later time t1 by choosing a control

u(t) = −B(t)TΦ(t0, t)
Ty, t0 ≤ t ≤ t1 where y satisfies W (t0, t1)y = x0. This is

an open loop control and thus system (3.1), (3.2) is referred to as an open loop

control system.

What we are interested in is to have a control which is automatically determined

at each time t on the basis of the state of the system at that time. For instance, one

can take the control given by

u(t) = −F (t)x(t), t ∈ I , (3.48)

where I = [t0,∞] and F (·) ∈ L 2 (I;Rp×n). Substituting this in system (3.1), (3.2)

will yield

ẋ(t) = (A(t)−B(t)F (t))x(t), t ∈ I ,

y(t) = C(t)x(t), t ∈ I .
(3.49)

System (3.49) is said to be a closed loop control system and equation (3.48) is

called a (linear) feedback law. Figure 3.3 represents a diagram of a closed loop

system.

system (plant)

regulator
F

x(·)

u(·) = Fx(·)

Figure 3.3: Closed loop system.

3.7 Linear State Feedback Control

The actual operation of the control system is compared to the desired operation and

the input to the system is adjusted on the basis of this comparison. This is called
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the feedback feature of most of the control systems. Thus feedback control systems

are able to operate satisfactorily despite adverse conditions such as disturbances

acting on the system itself or variations in plant properties.

An important aspect of the feedback system design is the stability of the con-

trol system. Sometimes its main objective is to actually stabilize the system if it is

initially unstable, or to improve its stability if transient phenomena do not die out

sufficiently fast.

Consider the linear time-invariant continuous system (3.6) given by

dx(t)

dt
= Ax(t) +Bu(t), t ∈ I .

Let us assume that the complete state can be accurately measured at all times and

is thus available for feedback. Then it is possible to implement a linear control law

of the form

u(t) = −F (t)x(t) , (3.50)

where the matrix F (t) (possibly time-varying) with appropriate dimensions is called

the feedback gain matrix. If this control law is connected to system (3.6), we

obtain a closed loop system described by

dx(t)

dt
= (A−BF (t))x(t) . (3.51)

In particular, if a constant matrix F is chosen, the stability of the system is deter-

mined by the eigenvalues of A−BF (see Theorem 3.2.6).

The following theorem sheds light on the concepts of controllability and stabi-

lizability.

Theorem 3.7.1 Consider the linear time-invariant system (3.6) with the time-

invariant control law

u(t) = −Fx(t) . (3.52)

Then the following holds:
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The eigenvalues of the closed loop A−BF can be arbitrarily located in the complex

plane (with the restriction that complex eigenvalues occur in complex conjugate pairs)

by choosing F suitably if and only if the system (3.6) is completely controllable.

It is possible to find a constant matrix F such that the closed loop system (3.51) is

asymptotically stable if and only if the system (3.6) is stabilizable.

The first part of the above theorem means that it is always possible to stabilize

a completely controllable system by state feedback, or to improve its stability by

locating the closed-loop poles in the left-half complex plane. However, it does not

specify as to where in the left-half complex plane the closed-loop poles should be

located. The second part of the theorem suggests that if the system is stabilizable

but not completely controllable (not all), the unstable poles of the system can be

moved to arbitrary locations by choosing appropriate gain matrix F .

3.8 The Deterministic Linear Optimal Regulator

Problem

We have seen in the previous section that a complete controllable time-invariant

linear system can always be stabilized by a linear feedback law. Also, since the

closed-loop poles can be located anywhere in the complex plane, the system can be

stabilized. Moreover, by choosing these poles far to the left in the complex plane,

the convergence to the zero state can be made arbitrarily quickly. However, making

the system move quickly requires large input amplitudes. In any practical problem

the input amplitudes are constrained to certain maximal values. This imposes a

limit of how far the closed-loop poles can be moved to the left. Thus, we need to

consider both the speed of convergence of the state to zero and the magnitude of

the input amplitudes. This naturally leads to an optimization problem.

Let us study the optimization problem generally by considering the linear continuous-
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time system (3.1) described by

dx(t)

dt
= A(t)x(t) +B(t)u(t) ,

with controlled variable

z(t) = D(t)x(t) . (3.53)

Here we assume that the matrix A(t) is continuous, the matrices B(t) and D(t)

are piecewise continuous functions and all the matrix functions are bounded. We

consider the problem to reduce the controlled variable z(t) to zero as quickly as

possible. One criterion to express how quickly z(t) is reduced to zero during the

interval [t0, t1] is the quadratic cost functional∫ t1

t0

zT (t)R1z(t) dt , (3.54)

where R1(t) is a positive-definite symmetric matrix which is piecewise continuous

with respect to t. The quantity zT (t)R1z(t) is a measure of the extent to which

the controlled variable z at time t deviates from zero. The weighting matrix R1(t)

determines how much weight is attached to each of the components of z. If R3(t) is

diagonal (as often is the case), zT (t)R1z(t) is the weighted sum of the deviations of

each of the components of z from zero. The integral (3.54) is a criterion for cumu-

lative deviation of z(t) from zero during the interval [t0, t1].

Now, attempting to minimize the quadratic cost criterion (3.54) will result in

indefinitely large input amplitudes. Therefore, an inclusion of a second term in the

criterion prevents the input from growing indefinitely. We thus consider∫ t1

t0

(
zT (t)R1z(t) + uT (t)R2u(t)

)
dt , (3.55)

where R2(t) is a positive-definite symmetric matrix and a piecewise continuous func-

tion of t. The relative importance of the two terms in the latter criterion (3.55) is

determined by the matrices R1 and R2. If it is very important that the terminal

state x(t1) is as close as possible to the zero state, it is useful to extend (3.55) by

adding a third term as follows,∫ t1

t0

(
zT (t)R1z(t) + uT (t)R2u(t)

)
dt + xT (t1)P1x(t1) , (3.56)
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where P1 is a nonnegative-definite symmetric matrix.

As a summary to our optimization problem, we have the following definition:

Definition 3.8.1 (Deterministic Linear Optimal Regulator Problem)

Consider the state or the response of the linear control system given by equation (3.1)

with the initial condition x(t0) = x0, and the controlled variable

z(t) = D(t)x(t) . (3.57)

Determine an input u(t), t0 ≤ t ≤ t1, for which the criterion∫ t1

t0

[
zT (t)R1(t)z(t) + uTR2(t)u(t)

]
dt+ xT (t1)P1x(t1) (3.58)

is minimal. Here, P1 is a nonnegative-definite symmetric matrix and R1(t) and

R2(t) are positive-definite symmetric matrices for t0 ≤ t ≤ t1.

Remarks: It is assumed that A(t) is a continuous function of t and that

B(t), D(t), R1(t) and R2(t) are piecewise continuous functions of t, and that all

these matrix functions are bounded. If all the matrices in the deterministic linear

optimal regulator problem are constant, then it is said to be a time-invariant

deterministic linear optimal regulator problem.

The term “deterministic” suggests that the problem under consideration has a

disturbed initial state and it is required to bring the (linear) system to the zero

state as quickly as possible keeping the input amplitudes bounded. In contrast,

a “stochastic” linear optimal regulator problem deals with the disturbances acting

uninterruptedly upon the system that tend to drive the state away from the zero

state.

The next theorem gives us the solution of the regulator problem in the form of

a linear control law.

Theorem 3.8.2 Consider the deterministic linear optimal regulator problem. Then

the optimal input u(t) can be generated through a linear control law of the form

u(t) = −F (t)x(t) , (3.59)
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where

F (t) = R−1
2 BTP (t) . (3.60)

Here the symmetric nonnegative-definite matrix P (t) satisfies the matrix Riccati

equation

−dP (t)

dt
= DT (t)R1(t)D(t)− P (t)B(t)R−1

2 (t)BT (t)P (t) + P (t)A(t) + AT (t)P (t) ,

(3.61)

with the terminal condition

P (t1) = P1 . (3.62)

The minimal value of the cost criterion is equal to xT0 P (t0)x0.

According to this theorem, the control law (3.59) automatically generates the

optimal input for any initial state. A block diagram interpretation in Figure 3.4

illustrates the closed-loop nature of the solution.

u(·) system (plant)

feedback gain
matrix
F (t)

0 +

−
x(t)

Figure 3.4: The feedback structure of the optimal linear regulator.

Remark: Under the conditions formulated in Definition 3.8.1, it can be proved

that the deterministic optimal regulator problem has a unique solution. The exis-

tence of the solution of the regulator problem also guarantees that the matrix Riccati

equation (3.61) with the terminal condition (3.62) has a unique solution. Further

discussions on the existence of the solutions of the regulator problem and Riccati

equations can be found at Kalman (1960) [22], Athans and Falb (1966) [1], Bucy

(1967) [6, 7], Moore and Anderson (1968) [35], and Schumitzky (1968) [50].

In practical problems, it is often a natural concern to consider very long control

periods [t0, t1]. The question in mind is, what happens to the asymptotic behavior
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of the solution of the deterministic regulator problem as t1 → ∞? Under certain

conditions (see Kwakernaak and Sivan (1972) [30], Theorem 3.5) the following results

hold.

1. As t1 → ∞, the solution P (t) of the matrix Riccati equation (3.61) with

terminal condition (3.62) generally approaches a steady-state solution P̄ (t)

which is independent of P1.

2. The corresponding steady state control law

u(t) = −F̄ (t)x(t) with F̄ (t) = R−1
2 BT (t)P̄ (t) (3.63)

is asymptotically stable.

The second item can be easily understood as follows: Since the integral∫ ∞
t0

(
zT (t)R1(t)z(t) + uT (t)R2(t)u(t)

)
dt (3.64)

exists for the steady-state control law, it follows that in the closed-loop system

z(t)→ 0 and u(t)→ 0 as t→∞. This can be generally true only if x(t)→ 0, that

is, the closed-loop system is asymptotically stable.

For a time-invariant system, we have the following result:

Theorem 3.8.3 Consider the time-invariant regulator problem for the system

dx(t)

dt
= Ax(t) +Bu(t) ,

z(t) = Dx(t) ,

(3.65)

and the criterion∫ t1

t0

(
zT (t)R1z(t) + uT (t)R2u(t)

)
dt+ xT (t1)P1x(t1) , (3.66)

with constant matrices A,B,D,R1 > 0, R2 > 0, and P1 ≥ 0. The corresponding

Riccati equation is given by

−dP (t)

dt
= DTR1D − P (t)BR−1

2 BTP (t) + P (t)A+ ATP (t) , (3.67)
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with terminal condition

P (t1) = P1 . (3.68)

Assuming that the system (3.65) is stabilizable and detectable, then the following

statements hold:

1. As t1 →∞, the solution of the Riccati equation (3.67) approaches the unique

value P̄ independent of P1.

2. P̄ is the unique nonnegative-definite symmetric solution of the algebraic Riccati

equation given by

0 = DTR1D − PBR−1
2 BTP + PA+ ATP . (3.69)

3. The steady-state control law described by

u(t) = −F̄ x(t) , where F̄ = R−1
2 BT P̄ (3.70)

is asymptotically stable.

4. The steady-state control law minimizes

lim
t1→∞

{∫ t1

t0

(
zT (t)R1z(t) + uT (t)R2u(t)

)
dt+ xT (t1)P1x(t1)

}
, (3.71)

for all P1 ≥ 0. For the steady-state control law, the criterion (3.71) takes the

value xT (t0)P̄ x(t0).

Remark: Stabilizability and detectability are sufficient conditions for the Ric-

cati equation to converge to a unique P̄ for all P1 ≥ 0 and for the algebraic Riccati

equation to have a unique nonnegative-definite solution.

3.9 Nonlinear Systems

For nonlinear systems, there exists no analytical closed form of a control law u(t)

which solves the control problem. However, there are theorems that provide local

existence, uniqueness, and the possibility of linear approximation of the nonlinear

feedback law. Following Theorem 5.6 in Russell (1979) [49], we have the following

results:
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Theorem 3.9.1 Consider the nonlinear problem (NLCP) given by

dx

dt
= F(x, u) ,

z = Dx ,

(3.72)

and let (x̄, ū) be an equilibrium of the system such that F is at least two times

continuously differentiable at (x̄, ū). Consider the criterion

J(u, x) =

∫ ∞
0

(
(x− x̄)T R1 (x− x̄) + (u− ū)T R2 (u− ū)

)
dt . (3.73)

Furthermore, consider the linearized system around (x̄, ū) described by

dx

dt
= A (x− x̄) +B (u− ū) ,

z = D (x− x̄) ,

(3.74)

where A and B denotes the Jacobian of F(x, u) with respect to x and u at (x̄, ū),

respectively. Supposed that the linearized system (3.74) is stabilizable and observable.

Then there exists a neighborhood N of (x̄, ū) such that the following holds:

1. A unique feedback law u = K(x) which solves the NLCP for x ∈ N exists.

2. The stationary solution x = x̄ is asymptotically stable for the closed-loop sys-

tem
dx

dt
= F (x,K(x)) , x(0) ∈ N . (3.75)

3. The feedback K has the form

K = K (x− x̄) + ū+ o (‖x− x̄‖) , (3.76)

where K is the optimal feedback matrix for the linearized system.

4. The feedback law

u` = K (x− x̄) + ū , (3.77)

also stabilizes the nonlinear system for x(0) ∈ N .



Chapter 4

The Model Equations and the

Control Formulation

In this chapter we will present the full cardiovascular system model developed in

Chapter 2 and the control problem. The focus is to obtain a stabilizing control for

the nonlinear full system which is suboptimal via constructing an optimal control

for the corresponding simplified model. Model modifications and the corresponding

linearization will be discussed to achieve a linear feedback control.

4.1 The Cardiovascular System Model

Our full system cardiovascular model is depicted in Figure 4.1. The model can be

described as a system of coupled first order ordinary differential equations with state

vector

x̃ = (Psa, Pfa, Pas, Pvs, Pap, Pvp, P`v, Rsp, Srv, σrv, H)T ∈ R11 , (4.1)

representing pressures in the systemic aorta, finger arteries, arterial systemic, venous

systemic, arterial pulmonary venous pulmonary and left ventricle compartments,

systemic peripheral resistance, right ventricular contractility and its derivative, and

61
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the heart rate, respectively. The parameter vector of the system is

p̃ = (csa, cfa, cas, cvs, crv, cap, cvp, Vtot, Vd,

Rmv,open, Rav,open, Rsc1 , Rsc2 , Rspf
, Rrv, Rpp, a, b, c,

Em, Tr,frac, κ, Ca,O2 , K,Apesk,M0, ρ, αrv, γrv, βrv)
T ∈ R30 .

(4.2)

The system of differential equations describing the full system is given by

dPsa(t)

dt
=

1

csa

(
P`v(t)− Psa(t)

Rav(t)
− Psa(t)− Pfa(t)

Rsc1

− Psa(t)− Pas(t)
Rsc2

)
,

dPfa(t)

dt
=

1

cfa

(
Psa(t)− Pfa(t)

Rsc1

− Pfa(t)− Pvs(t)
Rspf

)
,

dPas(t)

dt
=

1

cas

(
Psa(t)− Pas(t)

Rsc2

− Pas(t)− Pvs(t)
Rsp(t)

)
,

dPvs(t)

dt
=

1

cvs

(
Pas(t)− Pvs(t)

Rsp(t)
+
Pfa(t)− Pvs(t)

Rspf

−Qrv(t)

)
,

dPap(t)

dt
=

1

cap

(
Qrv(t)−

Pap(t)− Pvp(t)
Rpp

)
,

dPvp(t)

dt
=

1

cvp

(
Pap(t)− Pvp(t)

Rpp

− Pvp(t)− Plv(t)
Rmv(t)

)
,

dP`v(t)

dt
= E`v(t)

 dE`v(t)

dt
P`v(t)

E`v(t)
2 +

Pvp(t)− P`v(t)
Rmv(t)

− P`v(t)− Psa(t)
Rav(t)

 ,

dRsp(t)

dt
=

1

K

(
Apesk

(
Pas(t)− Pvs(t)

Rsp(t)
Ca,O2 −MT

)
− (Pas(t)− Pvs(t))

)
,

dSrv(t)

dt
= σrv(t) ,

dσrv(t)

dt
= −αrvSrv(t)− γrσrv(t) + βrvH(t) ,

dH

dt
= u(t) .

(4.3)

The cardiac output of the right ventricle Qrv(t) is given by

Qrv(t) = H
crvPvs(t)ar(H)f(Srv(t), Pap(t))

ar(H)Pap(t) + kr(H)f(Srv(t), Pap(t))
, (4.4)

where

kr(H) = e−td(H)(crvRrv)−1

and ar(H) = 1− kr(H) , (4.5)

and

f(Srv(t), Pap(t)) = 0.5 (Srv(t) + Pap(t))− 0.5
(
(Pap(t)− Srv(t))2 + 0.001

)1/2
,

(4.6)
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is a smooth function that chooses the minimum between Srv and Pap at a time

instant t. The time varying resistances, Rmv(t) and Rav(t) are defined by

Rmv(t) =

 ∞ for P`v(t) > Pvp(t) ,

Rmv,open for P`v(t) ≤ Pvp(t) ,

Rav(t) =

 ∞ for P`v(t) < Psa(t) ,

Rav,open for P`v(t) ≥ Psa(t) .

(4.7)

Moreover, the time-varying elastance E`v(t) and its derivative
E`v(t)

dt
are given,

respectively, as

E`v(t) =



Em +
EM − Em

2

[
1− cos

(
πt

TM

)]
, 0 ≤ t ≤ TM

Em +
EM − Em

2

[
cos

(
π

Tr
(t− TM)

)
+ 1

]
, TM ≤ t ≤ TM + Tr

Em, TM + Tr ≤ t < T ,

(4.8)

and

dE`v(t)

dt
=



EM − Em
2

[
π

TM
sin

(
πt

TM

)]
, 0 ≤ t ≤ TM

EM − Em
2

[
− π

Tr
sin

(
π

Tr
(t− TM)

)]
, TM ≤ t ≤ TM + Tr

0, TM + Tr ≤ t < T ,

(4.9)

where the maximum elastance function value EM is a function of H described by

EM(H) = a exp(−b exp(−cH)) , (4.10)

and the time of peak elastance TM is expressed using Bazett’s formula as

TM =
κ

H1/2
. (4.11)

See Chapter 2 for detailed explanation of these auxiliary equations. The values for

all the parameters used is listed in the tables in Appendix A.

The last equation in (4.3) is an equation for the feedback law which controls the

heart rate, where u(t) is constructed as a function of the state variables. Details

will be discussed in the next section.
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Adding the first seven equations in (4.3) will yield

csaPsa + cfaPfa + casPas + cvsPvs + capPap + cvpPvp +
1

E`v
P`v + Vd ≡ Vtot , (4.12)

where Vtot denotes the total blood volume, which remains constant. This suggests

that there is no exchange of volume between the cardiovascular system and the

interstitium. Also, for given Vtot, csa, cfa, cas, cvs, cap, cvp, E`v, and Vd, equation (4.12)

defines a hyperplane in R7 which is invariant for system (4.3). From equation (4.12),

we can express one of the pressures in terms of the others. For instance, we can

choose

Pvp = Pvp (Psa, Pfa, Pas, Pvs, Pap, P`v)

:=
1

cvp

(
Vtot − csaPsa − cfaPfa − casPas − cvsPvs − capPap −

1

E`v
P`v − Vd

)
.

(4.13)

With the above argument on the invariance of (4.12) for the full system, we can

reduce the dimension of the system by one. This can be done by replacing Pvp by

the expression in (4.13), and eliminate the sixth equation of the full system (4.3).

This system reduction plays an important role in obtaining a stabilizing feedback

control. Now, for the reduced state

x = (Psa, Pfa, Pas, Pvs, Pap, P`v, Rsp, Srv, σr, H)T ∈ R10 , (4.14)

and the parameter vector of the system,

p = (csa, cfa, cas, cvs, crv, cap, Vtot, Vd,

Rmv,open, Rav,open, Rsc1 , Rsc2 , Rspf
, Rrv, Rpp, a, b, c,

Em, Tr,frac, κ, Ca,O2 , K,Apesk,M0, ρ, αrv, γrv, βrv)
T ∈ R29 .

(4.15)

Letting W be the ergometric workload introduced in Chapter 2, Section 2.6, we can

write the system of first order differential equations as follows:

dx

dt
= G (x(t), p,W, u(t)) , t ≥ 0 . (4.16)
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Omitting t for brevity, the coordinates of G are given by

G1 =
1

csa

(
P`v − Psa
Rav

− Psa − Pfa
Rsc1

− Psa − Pas
Rsc2

)
,

G2 =
1

cfa

(
Psa − Pfa
Rsc1

− Pfa − Pvs
Rspf

)
,

G3 =
1

cas

(
Psa − Pas
Rsc2

− Pas − Pvs
Rsp

)
,

G4 =
1

cvs

(
Pas − Pvs
Rsp

+
Pfa − Pvs
Rspf

−Qrv

)
,

G5 =
1

cap

(
Qrv −

Pap − Pvp (Psa, Pfa, Pas, Pvs, Pap, P`v)

Rpp

)
,

G6 = E`v

 dE`v
dt

P`v

E`v
2 +

Pvp (Psa, Pfa, Pas, Pvs, Pap, P`v)− P`v
Rmv

− P`v − Psa
Rav

 ,

G7 =
1

K

(
Apesk

(
Pas − Pvs
Rsp

Ca,O2 −MT

)
− (Pas − Pvs)

)
,

G8 = σrv ,

G9 = −αrvSrv − γrvσrv + βrvH ,

G10 = u ,

(4.17)

where the auxiliary equations are the same as in the full system (4.3) mentioned

above .

In the following sections, we will present the control problem and its formulation.

We will proceed as in Batzel et al. (2007) [2], Chapter 1, where we replaced the

arterial systemic pressure Pas by the systemic aortic Psa in the control formulation.

4.2 The Control Problem

Many physiologists proceed from the assumption that optimization is a fundamen-

tal concept in the evolution of biological systems (see Kenner (1979) [27] or Swan

(1984) [53]). That is, cells, tissues, organs, systems of organs, etc. function in such a

way, that for instance, consumption of energy is minimized. Applying the principle
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of economical use of energy to the cardiovascular system means that the work done

by the heart, which is essentially ejection of the stroke volume, is minimized.

Now, let us talk more about the control variable. We consider the variation of

the heart rate to be the control variable and is given by

dH

dt
= u(t) . (4.18)

This control represents the baroreceptor loop including the action of the barorecep-

tors which measure the aortic pressure Psa. Control signals are then generated in the

medulla and are transmitted by the autonomic nervous system. The baroreceptor

loop also includes the action of the control signals on the pacemaker cells in the

sine node which in turn change the heart frequency. It should be noted that we do

not consider the fact that these signals also influence the systemic peripheral resis-

tance, the compliance of the venous systemic compartment and the contractilities

respectively, elastances of the ventricles. We assume that the latter are controlled in-

directly via the heart frequency. We do not know the exact details of how the signals

from the baroreceptors are transformed in the medulla into the signals transmitted

by the sympathetic and parasympathetic nervous system. With this limitation, our

approach is based on the optimal control theory. The idea is to construct a stabiliz-

ing feedback control which drives the system from one equilibrium state to another

equilibrium state.

In our case, we consider a situation where a constant workload is imposed on

the cardiovascular system assuming that the control mechanism works in an optimal

way. This means, that we are interested in the system transitions from the equi-

librium “rest” state xrest corresponding to zero workload, MT = M rest = M0 to the

equilibrium “exercise” state xexer corresponding to the imposed constant workload

W exer, MT = M exer = M0 + ρW exer. Mathematically, we assume that the control

u(t) is chosen such that the quadratic cost functional

J
(
u(·), xrest

)
=

∫ ∞
0

(
q2
sa (Psa(t)− P exer

sa )2 + u(t)2
)
dt (4.19)

is minimized. Quadratic terms are used instead of absolute values due to continuity
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reasons. The positive scalar q2
sa is a weighting factor. In the cost functional (4.19),

deviations of the aortic pressure from the equilibrium value and large values of the

control function are penalized. Notice also that only Psa (i.e., first component of the

solution x(t) of the system (4.16) with initial condition x(0) = xrest and W = W exer)

enters the cost functional. This reflects the assumption that only the aortic pressure

is sensed in the system.

Moreover, in addition to system (4.16) we have the output equation

y(t) = qsa (Psa(t)− P exer
sa ) = (qsa, 0, . . . , 0) (x(t)− xexer) , t ≥ 0 . (4.20)

Hence, the cost functional (4.19) can be written as

J
(
u(·), xrest

)
=

∫ ∞
0

(
y(t)2 + u(t)2

)
dt . (4.21)

4.3 Determination of Equilibria

In this study, we are considering cardiovascular system model (4.3) which generates

pulsatile pressures. The left ventricle is the source of pulse waves in the system. We

pointed out in the previous section that we will consider the system transitions from

equilibrium rest state to equilibrium exercise state. The question now is, what does

the equilibrium state means, in the case of pulsatile pressures?

Before we answer the question, let us first recall the definition of a periodic

solution of a system (cf. Boyce and DiPrima (2001) [4] and Hirsch et al. (2004) [18]).

Definition 4.3.1 A periodic solution for the system

dx

dt
= f(x) , (4.22)

satisfies the relation

x(t+ τ) = x(t) . (4.23)

for all t and some nonnegative constant τ . The least such τ is called the period of

the solution.
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It can be verified numerically, that our full system (4.3) generates a periodic

solution (see next chapter). Going back to our problem, we need to specify equi-

librium rest and equilibrium exercise values. These would be the initial conditions,

respectively, the terminal values in which the system tends, in our control formula-

tion. To determine the “equilibrium values”, we consider taking the mean values of

the pressures of the corresponding periodic solutions, using

Pmean = Pdias +
1

3
(Psys − Pdias) , (4.24)

where Pdias and Psys are the end-diastolic and end-systolic pressures, respectively,

and Pmean denotes the computed mean pressure. Two separate computations are

done to obtain equilibrium “mean” values. One for the rest condition and the

other for the exercise condition. To do this, we choose to fix the values for the

controlled parameters namely, the heart rate H, workload W and Peskin’s constant

Apesk. Thus we have, Hrest,W rest, and Arest
pesk corresponding to rest condition and

respectively, Hexer,W exer, and Aexer
pesk for exercise condition. The set of values are

listed in table A.5. In both cases, the baroreceptor loop control dH
dt

= u(t) is not

considered. Numerical implementation in determining these equilibria is presented

in the next chapter.

4.4 System Modifications and Reductions

Our full system (4.3) is a set of nonlinear coupled ordinary differential equations.

Also, the right hand side of the system involves terms which are time dependent

aside from the states. These include the time-varying resistances Rmv(t) and Rav(t),

elastance function E`v(t) and its derivative
dE`v(t)

dt
, and indirectly the Gompertz

function (H-dependent) which is inherent in the computation of the left ventricular

elastance. Instead of dealing with this non-autonomous nonlinear system which will

give us difficulty in linearizing, we consider another system where the left ventricle

is modeled similar to the right ventricle. This leads us to a system similar to the

Kappel model (cf. Batzel (2007) [2], Chapter 1) with additional systemic aorta and

finger arteries compartment. Figure 4.2 shows the block diagram of this model.
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The time varying left ventricular elastance E`v(t) and resistances Rmv(t) and

Rav(t) do not appear in this modified model. However, introduction of new variables

and parameters are inevitable. As in [2], we have the left ventricular cardiac output

Q`v as

Q`v = H
c`vPvpa`(H)f(S`v, Pas)

a`(H)Pas + k`(H)f(S`v, Pas)
, (4.25)

where

k`(H) = e−td(H)(c`vR`v)−1

and a`(H) = 1− k`(H) , (4.26)

and

f(S`v, Pas) = 0.5 (S`v + Pas)− 0.5
(
(Pas − S`v)2 + 0.001

)1/2
. (4.27)

c`v and R`v are the compliance and resistance of the left ventricle, respectively.

Furthermore, the contractility of the left ventricle S`v is described by the second

order differential equation

d2S`v
dt2

+ γ`v
dS`v
dt

+ α`vS`v = β`vH , (4.28)

where α`v, β`v and γ`v are constants. Transforming this system to system of first

order differential equation and introducing σ`v = dS`v

dt
gives us

dS`v
dt

= σ`v ,

dσ`v
dt

= −α`vS`v − γ`vσ`v + β`vH .

(4.29)

We hope that a stabilizing control for the modified model would work for the

full system (4.17) as well (which it does!). It can also be verified that neglecting the

finger arteries compartment in the modified model also stabilizes the system (4.17).

Figure 4.3 illustrates the modified model neglecting the finger arteries compartment.

The next chapter will provide simulations taking the modified model with and with-

out finger arteries compartment for the computation of gain matrix in the control

problem.

Our modified system with finger arteries can now be expressed as a system of

differential equation as

dx̂

dt
= F (x̂(t), p̂,W, u(t)) , t ≥ 0 . (4.30)
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Figure 4.3: The block diagram of the modified linear cardiovascular system

model without the finger arteries compartment.
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with the state vector

x̂ = (Psa, Pfa, Pas, Pvs, Pap, Rsp, S`v, σ`v, Srv, σrv, H)T ∈ R11 , (4.31)

and the parameter vector

p̂ = (csa, cfa, cas, cvs, c`v, crv, cap, Vtot, Rmv,open, Rav,open, Rsc1 ,

Rsc2 , Rspf
, R`v, Rrv, Rpp, a, b, c, Em, Tr,frac, κ, Ca,O2 ,

K,Apesk,M0, ρ, α`v, γ`v, β`v, αrv, γrv, βrv)
T ∈ R33 .

(4.32)

The coordinates of F are given by

F1 =
1

csa

(
Q`v −

Psa − Pfa
Rsc1

− Psa − Pas
Rsc2

)
,

F2 =
1

cfa

(
Psa − Pfa
Rsc1

− Pfa − Pvs
Rspf

)
,

F3 =
1

cas

(
Psa − Pas
Rsc2

− Pas − Pvs
Rsp

)
,

F4 =
1

cvs

(
Pas − Pvs
Rsp

+
Pfa − Pvs
Rspf

−Qrv

)
,

F5 =
1

cap

(
Qrv −

Pap − Pvp (Psa, Pfa, Pas, Pvs, Pap)

Rpp

)
,

F6 =
1

K

(
Apesk

(
Pas − Pvs
Rsp

Ca,O2 −MT

)
− (Pas − Pvs)

)
,

F7 = σ`v ,

F8 = −α`vS`v − γ`vσ`v + β`vH ,

F9 = σrv ,

F10 = −αrvSrv − γrvσrv + βrvH ,

F11 = u ,

(4.33)

with

Q`v = H
c`vPvpa`(H)f(S`v, Pas)

a`(H)Pas + k`(H)f(S`v, Pas)
,

Qrv = H
crvPvsar(H)f(Srv, Pap)

ar(H)Pap + kr(H)f(Srv, Pap)
,

(4.34)

and

Pvp =
1

cvp
(Vtot − csaPsa − cfaPfa − casPas − cvsPvs − capPap) . (4.35)



4.4. System Modifications and Reductions 74

Now, without the finger arteries compartment, we consider the further modified

and reduced system as follows:

dx̌

dt
= B (x̌(t), p̌,W, u(t)) , t ≥ 0 . (4.36)

with the state vector

x̌ = (Psa, Pas, Pvs, Pap, Rsp, S`v, σ`v, Srv, σrv, H)T ∈ R10 , (4.37)

and the parameter vector

p̌ = (csa, cas, cvs, c`v, crv, cap, Vtot, Rmv,open, Rav,open,

Rsc2 , R`v, Rrv, Rpp, a, b, c, Em, Tr,frac, κ, Ca,O2 ,

K,Apesk,M0, ρ, α`v, γ`v, β`v, αrv, γrv, βrv)
T ∈ R30 .

(4.38)

The coordinates of B are given by

B1 =
1

csa

(
Q`v −

Psa − Pas
Rsc2

)
,

B2 =
1

cas

(
Psa − Pas
Rsc2

− Pas − Pvs
Rsp

)
,

B3 =
1

cvs

(
Pas − Pvs
Rsp

−Qrv

)
,

B4 =
1

cap

(
Qrv −

Pap − Pvp (Psa, Pas, Pvs, Pap)

Rpp

)
,

B5 =
1

K

(
Apesk

(
Pas − Pvs
Rsp

Ca,O2 −MT

)
− (Pas − Pvs)

)
,

B6 = σ`v ,

B7 = −α`vS`v − γ`vσ`v + β`vH ,

B8 = σrv ,

B9 = −αrvSrv − γrvσrv + βrvH ,

B10 = u ,

(4.39)

with

Q`v = H
c`vPvpa`(H)f(S`v, Pas)

a`(H)Pas + k`(H)f(S`v, Pas)
,

Qrv = H
crvPvsar(H)f(Srv, Pap)

ar(H)Pap + kr(H)f(Srv, Pap)
,

(4.40)

and

Pvp =
1

cvp
(Vtot − csaPsa − casPas − cvsPvs − capPap) . (4.41)
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4.5 The Linear-Quadratic Regulator Problem

In this section, we will present the linearization of the modified model (4.30) and

the corresponding linear-quadratic regulator problem (LQRP). Analogously, one can

obtain the linearization and LQRP of the further modified model without finger ar-

teries compartment given by system (4.36).

We perform a transformation of our control system by introducing

ξ(t) = x̂(t)− x̂exer (4.42)

and linearizing the model equations around ξ = 0. This gives the linear system

dξ

dt
= Âξ(t) + B̂u(t), t ≥ 0 ,

ξ(0) = x̂rest − x̂exer ,

(4.43)

where

Â =
∂F
∂x̂

(x̂exer, p̂,W exer, 0) ∈ R11×11 ,

B̂ = (0, . . . , 0, 1)T ∈ R11 .

(4.44)

The matrix Â ∈ R11×11 is the Jacobian with respect to the states x̂ evaluated at the

equilibrium mean exercise values x̂ = x̂exer. The structure of A is given by

Â =



∗ ∗ ∗ ∗ ∗ 0 0 0 0 0 ∗
∗ ∗ 0 ∗ 0 0 0 0 0 0 0

∗ 0 ∗ ∗ 0 ∗ 0 0 0 0 0

0 ∗ ∗ ∗ ∗ ∗ 0 0 ∗ 0 ∗
∗ ∗ ∗ ∗ ∗ 0 0 0 ∗ 0 ∗
0 0 ∗ ∗ 0 ∗ 0 0 0 0 0

0 0 0 0 0 0 0 1 0 0 0

0 0 0 0 0 0 −α`v −γ`v 0 0 β`v

0 0 0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 −αrv −γrv βrv

0 0 0 0 0 0 0 0 0 0 0



, (4.45)
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where “∗” indicates an entry evaluated at specific equilibrium mean exercise values.

Appendix B provides the entire formula for the matrix Â (and Ǎ, corresponding to

the Jacobian of the further modified model without the finger arteries compartment).

Using the transformation x̂→ ξ the quadratic cost functional J takes the form

J
(
u(·), x̂rest − x̂exer

)
=

∫ ∞
0

(
η(t)2 + u(t)2

)
dt , (4.46)

where

η(t) = Ĉξ(t), t ≥ 0 , (4.47)

with Ĉ = (qsa, 0, . . . , 0) ∈ R11 and ξ(t) is the solution of the initial value problem

(4.43) with the given control u(t). Thus far, we have the linear system (4.43), (4.47)

and the quadratic cost functional (4.46) which constitute the linear-quadratic

regulator problem (LQRP).

4.6 Optimal Linear Feedback Control

The LQRP presented in the preceding section requires that we find a function û ∈
L 2 (0,∞;R) such that

J
(
û, x̂rest − x̂exer

)
= min

u∈L 2(0,∞;R)
J
(
u, x̂rest − x̂exer

)
. (4.48)

From control theory, the solution of the linear-quadratic regulator problem is given

by a linear feedback law (see for instance Kwakernaak and Sivan (1972) [30]). That

is, we have

û(t) = −Fξ∗(t), t ≥ 0 , (4.49)

where ξ∗(t) is the solution of the closed loop system

dξ

dt
= (Â− B̂F )ξ(t), t ≥ 0 ,

ξ(0) = x̂rest − x̂exer .

(4.50)

with the feedback matrix F = B̂TX ∈ R1×11 and X is the solution of the Riccati

matrix equation

XÂ+ ÂTX −XB̂B̂T + ĈT Ĉ = 0 . (4.51)
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If the pair (Â, B̂) is stabilizable and the pair (Ĉ, Â) is detectable, then the Riccati

equation (4.51) has a unique positive definite solution X. Controllability of (Â, B̂)

and observability of (Ĉ, Â) provide stronger conditions requiring

rank
(
B̂, ÂB̂, . . . , Â10B̂

)
= 11 and rank

(
ĈT , ÂT ĈT , . . . ,

(
ÂT
)10

ĈT

)
= 11 .

4.7 The Nonlinear Control Problem

To conclude this chapter, let us reemphasize our nonlinear control problem and

how the corresponding linear system provides the stabilizing control feedback to

this problem. Our objective is to find a control function u(t) that minimizes the

quadratic cost functional criterion

J
(
u(·), xrest

)
=

∫ ∞
0

(
q2
sa (Psa(t)− P exer

sa )2 + u(t)2
)
dt (4.52)

subject to the state equations

dx

dt
= G (x(t), p,W exer, u(t)) , x(0) = xrest . (4.53)

The previous sections talked about the model simplifications and linearization. It

neglects some of the essential variable state(s) in the full system such as left ventricle

pressure (finger arterial pressure). The LQRP and its solution provides additional

states including S`v and σ`v which are not in the original model. These terms only

appear to compute for the gain matrix of the modified model. However, in the

numerical implementation, only the elements corresponding to the states in the

original model influences the solution.



Chapter 5

Numerical Experiments and

Simulations

In this chapter, we will present the numerical computations and simulation results of

the cardiovascular model. The set of all the parameters used are given in the tables in

Appendix A. These parameter values are chosen from the identified parameters from

Kappel and Peer (1993) [26], from the literature, and some are estimated to obtain

reasonable values (for instance, a normal rest finger arterial pulsatile pressure of

120/90 mmHg). Numerical simulations on the left ventricular pressure and volume,

the states rest and exercise equilibrium behaviors, and the dynamics of controlling

the system from rest to exercise conditions will be presented.

5.1 The Left Ventricle

In our model, the left ventricle is the source of pulse waves in the cardiovascular

system. In this section we will present the computed left ventricular pressure and

volume curves during rest condition.

In Chapter 2, Section 2.4, we discussed the opening and closing of the mitral

and aortic valves. Starting at the relaxation phase, the pressure in the ventricle P`v

drops down to the level of the venous pressure Pvp. Then the mitral valve opens

which is the start of the filling process. P`v continues to decease in a short while and

78
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starts to increase until it again reaches Pvp. Here the filling process ends and the

mitral valve closes. At this point, we can measure the end-diastolic left ventricular

pressure. P`v continues to increase until it reaches the systemic aortic pressure Psa.

The aortic valve opens and the ejection process starts. P`v continues to increase

further and after some time it decreases to the same level of Psa in which the aortic

valve closes. This time we measure the end-systolic left ventricular pressure.

We are interested in determining the four time points for one heart cycle. These

are the time when the filling process starts, when it ends, the time when the ejection

process starts, and when it ends. To find these time points, we incorporated in the

option for the odesolver a function called ‘Events’ (see Matlab help for details).

In this function, we specify the four instances that we want to determine. Figure 5.1

depicts these four time points which are of importance to us. It shows the plots of

the venous (Pvp), aortic pressure (Psa) and left ventricular pressures (P`v) and their

points of intersections. The points for which end-diastolic and end-systolic pres-

sures occur are also specified. The simulation runs for 1500 seconds and the plots

are taken from the last full heart cycle.

Figures 5.14 (a) and (b) are the computed left ventricular pressure and volume

curves, respectively, showing the behavior of the pressure, respectively, volume in

the left ventricle during phases of isovolumetric contraction and isovolumetric re-

laxation. It also specifies the region for the duration of the diastole and systole.

As shown in the figures, during isovolumetric contraction, the pressure in the left

ventricle is increasing while the volume remains constant. At the start of ejection,

the pressure still increases and the volume drops. During isovolumetric relaxation,

the pressure is decreasing while the volume remains the same. The time points for

these phases are numerically obtained using the ’Events ’ specified earlier. The sim-

ulations are from one of the last complete pressure and volume cycles running for

1500 seconds.

To complete the numerical computations for the left ventricle dynamics, we in-
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Figure 5.1: The left ventricular, venous and aortic pressures showing the time

points for the start and end of filling process, start and end of

ejection process.
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(a)

(b)

Figure 5.2: (a) The time course of the left ventricular pressure. (b) The time

course of the left ventricular volume.
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clude the pressure-volume diagram as shown in figure 5.3. The time instances for

which the start and end of filling process and start and end of ejection process occur

are depicted as well. As above, the simulation is taken from the last complete cycle.

Figure 5.3: The pressure-volume diagram for the left ventricle.

5.2 Computation of the Mean Values

In Section 4.5, we presented how to compute the equilibria. In this section, we will

provide the numerical implementation and the plots of the whole cardiovascular sys-

tem depicting rest and exercise conditions. It should be noted that the computations

for equilibria are taken from the last full cycle of the simulation. In our case, we run

the program for 1500 seconds in which stabilities are observed in the states behavior.

In our numerical experiments, we first consider the system (4.3) without con-

trol equation dH
dt

= u(t). Two simulation runs are done to obtain the mean values

for both rest and exercise conditions. For the rest phase, we started at an initial

condition given in A.7 and run the program for 1500 seconds. The mean values
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are computed using equation (4.24) during the last full cycle. The values obtained

after the first simulation are used as initial conditions for the second run (P`v is held

constant at 2.4 mmHg). Then, the mean values are again computed in a similar way

after the run. These values are considered to be the ‘rest equilibrium values’ (except

for P`v in which its value is fixed to be 2.4 mmHg). Figure 5.4 (a) and (b) show the

behavior of the states during rest condition for the first and second simulation runs,

respectively. Table A.7 lists all the initial values of the states and the computed

mean and equilibrium values for the first and second runs.

For the exercise phase, the computed rest equilibrium values are used as initial

conditions (with P`v = 2.4 mmHg). The mean values are computed as before after

the first simulation run for 1500 seconds. Again these values serve as the initial

condition for the next run (again holding P`v = 2.4 mmHg). Finally, the ‘exercise

equilibrium values’ are computed from the last full cycle of the system. The initial,

mean and equilibrium values for the two simulation runs are given in table A.8.

Figure 5.5 (a) and (b) show the behavior of the states during exercise phase for the

first and second simulation runs, respectively.

5.3 Comparison of the Rest and Exercise Equilib-

rium Conditions

Now, let us look more closely at the behavior of the states during rest and exercise

conditions (no baroreceptor loop control). For the following simulations, the initial

values for the rest condition are the computed mean values from the first simulation

run (see previous section and table A.7) and the initial values for the exercise condi-

tion are the computed mean values after the first run (see table A.8). Each plot has

two subplots, the top subplot for the whole duration (0-1500 seconds) and bottom

subplot for at least the last 7.5% of the total time duration of the simulations. Also,

the red lines for all the bottom subplots denote the mean values of the states follow-

ing equation (4.24) obtained from the last full heart cycle. The blown-up subplots

for both rest and exercise are adjusted for comparison purposes. The values for the
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(a)

(b)

Figure 5.4: (a) First simulation results during rest condition. (b) Second simu-

lation results during rest condition obtaining ‘rest equilibrium val-

ues’ using the computed mean values in the first simulation.
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(a)

(b)

Figure 5.5: (a) First simulation results during exercise condition. (b) Sec-

ond simulation results during exercise condition obtaining ‘exercise

equilibrium values’ using the computed mean values in the first

simulation.
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controlled variables, namely, H,W, and Apesk for rest and exercise phases are listed

in table A.5.

From Figures 5.6-5.12, it can be deduced (except for the Pvs) that increasing the

controlled variables (mainly the heart rate, H) causes an increase in the correspond-

ing pressure values (and of course, the corresponding mean values). The decrease of

Pvs while increasing the heart rate may be attributed the Frank Starling mechanism

which is assumed in the filling process of the right ventricle. It can be clearly seen

from the figures that pulsatility is also increased. Notice also the decrease in the

range of pulsatility in the arterial systemic compartment (see figure 5.8). Further-

more, pulsatility is somehow damped out (almost linear) in the venous systemic

and arterial pulmonary compartments which are physiologically observable. These

behaviors can be seen in figures 5.9 and 5.10 (please note the scalings used). The

venous pulmonary pressure is again pulsatile since it is attached to the left ventricle

compartment in which pulsatility is generated. However, the pulsatility range is

small (see figure 5.11). Figure 5.13 depicts the behavior of the systemic peripheral

resistance. Pulsatility of Rsp is not so pronounced (take note of the scalings). Rest

condition has a higher equilibrium Rsp compared to the exercise condition.

(a) (b)

Figure 5.6: The aortic pressure Psa during (a) rest and (b) exercise conditions.

The figures below show the elastance function of the left ventricle during rest

and exercise phases. Observe that the maximum elastance value EM which is the
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(a) (b)

Figure 5.7: The finger arterial pressure Pfa during (a) rest and (b) exercise

conditions.

(a) (b)

Figure 5.8: The arterial systemic pressure Pas during (a) rest and (b) exercise

conditions.
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(a) (b)

Figure 5.9: The venous systemic pressure Pvs during (a) rest and (b) exercise

conditions.

(a) (b)

Figure 5.10: The arterial pulmonary pressure Pap during (a) rest and (b) exer-

cise conditions.
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(a) (b)

Figure 5.11: The venous pulmonary pressure Pvp during (a) rest and (b) exer-

cise conditions.

(a) (b)

Figure 5.12: The left ventricular pressure P`v under (a) rest and (b) exercise

conditions.
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(a) (b)

Figure 5.13: The systemic peripheral resistance Rsp under (a) rest and (b) ex-

ercise conditions.

peak of the elastance function increases as heart rate is increased during exercise.

Also, there is a time shift of the elastance function from rest to exercise conditions

(see Figure 5.14 (c)). These plots are generated from the last few complete cycles

of the system at equilibria.

Finally, Figure 5.15 (a) and (b) show the systemic and pulmonary flows during

rest and exercise conditions. The flows are computed as given in equation (2.5)

where Rsp is taken to be the mean equilibrium value. As expected, flows are ele-

vated during the exercise phase. Looking at the plots carefully, one can notice a

time shift of the flows during exercise.

5.4 Dynamics of the Controlled System

In this section, we will provide numerical simulations for the controlled system. Two

sets of simulations will be presented. One using the modified linearized model with

finger arterial compartment for control formulation and the other without this com-

partment (as discussed in the previous chapter).

Let us now summarize the steps for calculating the stabilizing control for our
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(a) (b)

(c)

Figure 5.14: The left ventricular elastance function E`v during (a) rest and (b)

exercise conditions. (c) E`v during rest and exercise in the same

coordinates.
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(a) (b)

Figure 5.15: The systemic and pulmonary flows during (a) rest and (b) exercise

conditions.

reduced cardiovascular model (4.17).

Step 1 : Compute the “initial” equilibrium state xinitial defined by the parameter choices

from which the system starts. Compute the “final” equilibrium state xfinal

determined by the choice of parameters characterizing the final state. The

initial state is the initial condition for the simulation and the control is designed

to steer the system from initial to final state. The initial and final equilibrium

states correspond to the equilibrium rest xrest and equilibrium exercise xexer,

respectively. (See Sections 4.3 and 5.2 for further details).

Step 2 : Simplify the model and linearize the system around the final steady state. (See

Section 4.4 and 4.5.)

Step 3 : Calculate the feedback gain matrix for the linear quadratic regulator problem

that will transfer the linearized system to the final state. This minimizes the

cost functional (4.52).

Step 4 : The feedback gain matrix will provide a control for the nonlinear system that

is suboptimal but stabilizing.

Generally speaking, with or without the finger arterial compartment in the model

simplification and control formulation, both provide a stabilizing control for the
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nonlinear problem. This is depicted in the following figures below. It can be seen

from Figures 5.16, 5.17, 5.18, 5.19, and 5.21 that the pressures drop for a short

time before going up and tending to the final states. This can be attributed to

the autoregulation which is manifested in the dynamics of the systemic peripheral

resistance Rsp in Figure 5.22. Rsp suddenly drops increasing the blood flow, thus

reducing the pressure for a short time duration. Then it increases and levels off at

some value influencing the pressures in a similar fashion.

(a) (b)

Figure 5.16: Controlled systemic aortic pressure Psa (a) with (b) without finger

arterial compartment in the control formulation.

(a) (b)

Figure 5.17: Controlled finger arterial pressure Pfa (a) with (b) without finger

arterial compartment in the control formulation.
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(a) (b)

Figure 5.18: Controlled arterial systemic pressure Pas (a) with (b) without fin-

ger arterial compartment in the control formulation.

(a) (b)

Figure 5.19: Controlled venous systemic pressure Pvs (a) with (b) without fin-

ger arterial compartment in the control formulation.
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(a) (b)

Figure 5.20: Controlled arterial pulmonary pressure Pap (a) with (b) without

finger arterial compartment in the control formulation.

(a) (b)

Figure 5.21: Controlled left ventricular pressure P`v (a) with (b) without finger

arterial compartment in the control formulation.
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(a) (b)

Figure 5.22: Controlled systemic peripheral resistance Rsp (a) with (b) without

finger arterial compartment in the control formulation.

Figures 5.23, 5.24, 5.25, and 5.26 show the dynamics of the left S`v and right Srv

ventricular contractilities and the corresponding derivatives σ`v and σrv. Focusing

our attention to Srv which is one of the original state variables, it can be observed

that the control immediately increases the contractility of the right ventricle. How-

ever, it fluctuates for some time before it tends to the equilibrium final state.

(a) (b)

Figure 5.23: Controlled left ventricular contractility S`v (a) with (b) without

finger arterial compartment in the control formulation.

Figure 5.27 depict the behavior of the heart rate H. With the weight (equal to

1) that is attached on the control u(t), H immediately tends to the equilibrium final
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(a) (b)

Figure 5.24: The dynamics of σ`v (a) with (b) without finger arterial compart-

ment in the control formulation.

(a) (b)

Figure 5.25: Controlled right ventricular contractility Srv (a) with (b) without

finger arterial compartment in the control formulation.
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(a) (b)

Figure 5.26: The dynamics of σrv (a) with (b) without finger arterial compart-

ment in the control formulation.

state.

(a) (b)

Figure 5.27: The heart rate H dynamics (a) with (b) without finger arterial

compartment.

Finally, Figure 5.28 shows the dynamics of the control u(t) stabilizing to the zero

state. An oscillatory behavior in the control is almost negligible.
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(a) (b)

Figure 5.28: The dynamics of the control u(t) (a) with (b) without finger ar-

terial compartment.



Chapter 6

Discussions and Remarks

The results of this thesis can be summarized into two parts. First is the mathemat-

ical modeling of a global pulsatile human cardiovascular system. We have shown,

that a pulsatile model can be obtained by considering the left ventricle as the source

of the pulse waves in the system while keeping the model flow in the other com-

partments as simple as possible. That is, we incorporated the pulsatile left ventricle

model in the existing nonpulsatile cardiovascular model developed by Kappel and

Peer (1993) [26] and previous works. We have used the left ventricle model developed

by Olufsen, et al. [46] and other related studies. We have simplified the time-varying

resistances Rmv(t) and Rav(t) into piecewise functions which are constant at certain

conditions and “infinitely large” at some instances (cf. Section 2.4, equation (2.26)).

The simulation results in Section 5.1 present satisfactory dynamics of the pressure

and volume curves of the left ventricle at rest. Modifications were made in the elas-

tance function of the left ventricle to allow changes under exercise activities.

The second main result of the thesis is the construction of the feedback control

law which transfers the pulsatile model from equilibrium rest to equilibrium exercise

condition. In the previous chapter, we presented two simplified models (one with

the finger arterial compartment and the other without) in which the linearized sys-

tem more ore less approximates the nonlinear pulsatile model. It has been shown

that the control formulation provides a suboptimal but stabilizing control for the

nonlinear system.
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The numerical simulations presented in Chapter 5 provide a satisfactory de-

scription of the regulatory mechanisms in the cardiovascular system in response to

a submaximal workload by considering only one control variable. Also, it is suffi-

cient to consider the systemic aortic pressure Psa in the cost functional to obtain a

feedback law. Hence, the short-term reaction of the cardiovascular system to a sub-

maximal workload can be modeled by a single input/single output control system.

Moreover, we approximated the feedback law by the solution of a linear quadratic

regulator problem.

As far as the work is concerned in this study, it is mainly theoretical modeling.

Model validation can be done through performing experiments and obtaining real-

time data. In this way, extensive parameter estimation can be done. Sensitivity

analysis can be performed to determine parameters which are sensitive to model

output. Then, model improvement can be obtained. Furthermore, there are a

number of details which need thorough investigation.

◦ The role of the unstressed volumes in the compartments.

◦ The relationship between the right ventricle contractility Srv and the left ventricle

elastance EM should be further investigated.

◦ The current model includes the process of autoregulation involving the constants

K and Apesk. An improved model providing more insights in metabolic mech-

anisms can be included. For instance, the influence of the vasodilator can be

taken into account.

◦ Investigation of the influence of the sympathetic nervous system on compliance,

respectively on the elastance of the ventricles during exercise should be consid-

ered.

◦ The compliance of the venous systemic compartment could be modeled to re-

flect the mechanism of active modification of the venous tone during periods of

exercising.

◦ The significance of the pulmonary baroreceptor loop (which is not included in
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the present model) for the control formulation needs further studies.

◦ Only short-term regulatory effects are considered in the current model. Long-

term control mechanisms such as control of blood volume by the kidneys can be

incorporated to model hemodynamics during a dialysis process.

◦ A model modification can be done to study the case of hemorrhage or transfusion.

Suppose that the arterial compartment is the source of hemorrhage, then we could

model the blood loss at the rate Fhem by

dPas
dt

=
1

cas

(
Psa − Pas
Rsc2

− Pas − Pvs
Rsp

− Fhem

)
. (6.1)

◦ The current model can be used to model the dynamics of the cardiovascular

system under orthostatic stress. In particular, the arterial systemic and venous

systemic compartments can be further subdivided to upper and lower parts.

These will give room to the rib and hips compartment in which orthostatic stress

induced by lower body negative pressure can be investigated. See for example

Kappel, et al. (2007) [24] and Fink et al. (2004) [34].

◦ The respiratory system and the corresponding control regulation can be included

to have a more global pulsatile cardiovascular-respiratory model.

◦ In addition to respiratory, the brain compartment can be treated separately. See

for instance, Fincham and Tehrani (1983) [10], Grodins, et.al (1967) [14], and

Milhorn, et al. (1965) [20].



Appendix A

Table of Variables and Parameter

Values

This appendix will provide the meanings, values and units of all parameters and

state variables used in the model. Equilibrium mean values for the rest and exercise

conditions will also be given.

Table A.1: The table for compliances.

Compliance Compartment Value [mL/mmHg]

csa systemic aorta 1.5

cfa finger arteries 0.085

cas arterial systemic 3.25

cvs venous systemic 850.95

crv relaxed right ventricle 44.131

cap arterial pulmonary 25.15

cvp venous pulmonary 200.75

c`v relaxed left ventricle 25
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Table A.5: The controlled parameters.

State Meaning
Value

Unit
rest exercise

H Heart rate 70/60 95/60 beat/sec

W Workload 0 50 Watt

Apesk Peskin’s constant 7.2276 12.25 mmHg sec/mL

Table A.6: The state variables and other auxiliary variables of the model.

Variable Meaning Unit

Psa Pressure in the systemic aorta compartment mmHg

Pfa Pressure in the finger arteries compartment mmHg

Pas Pressure in the arterial systemic compartment mmHg

Pvs Pressure in the venous systemic compartment mmHg

Pap Pressure in the arterial pulmonary compartment mmHg

Pvp Pressure in the venous pulmonary compartment mmHg

P`v Pressure in the left ventricle compartment mmHg

Srv Contractility of the right ventricle mmHg

S`v Contractility of the left ventricle mmHg

E`v Elastance of the left ventricle mmHg/mL

Qrv Cardiac output of the right ventricle mL/sec

Q`v Cardiac output of the right ventricle mL/sec
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Table A.7: Initial and equilibrium mean values during rest condition.

State Initial Value
Mean Value

(1st run) (2nd run)

Psa 120 105.6634 105.3509

Pfa 0.99(Psa) 101.8399 101.5397

Pas 86.5 87.0774 86.8040

Pvs 5.12 5.1240 5.1020

Pap 14.64 14.6329 14.6009

Pvp 4 3.9737 3.9643

P`v 2.4 44.2803 44.1557

Rsp 0.9505 0.9570 0.9561

Srv 5.4115 5.4115 5.4115

σrv 0 0 0

Table A.8: Initial and equilibrium mean values during exercise condition.

State Initial Value
Mean Value

(1st run) (2nd run)

Psa 105.3509 133.2252 132.6022

Pfa 101.5397 128.4260 127.8309

Pas 86.8040 107.5376 106.9687

Pvs 5.1020 4.7917 4.7700

Pap 14.6009 18.4806 18.4367

Pvp 3.9643 4.1128 4.1003

P`v 2.4 53.2380 53.0073

Rsp 0.9561 0.8801 0.8771

Srv 7.3442 7.3442 7.3442

σrv 0 0 0



Appendix B

Derivations of Some Equations

This appendix provides the derivations of some equations presented in Chapter 2.

Included also is the brief derivation of the derivative of the left ventricular pressure

which is given in system (4.3). Furthermore, the entries of the Jacobian discussed

in Chapter 4, Section 4.5 will be given.

B.1 The Derivations

• Equation (2.11):

Vrv(t) = Vrv,syste
−t(crvRrv)−1

+ crvPvs

(
1− e−t(crvRrv)−1

)
We want to derive the solution of the differential equation given by

dVrv(t)

dt
+

1

crvRrv

Vrv(t)−
1

Rrv

Pvs = 0 , Vrv(0) = Vrv,syst .

To integrate this easily, let’s recall the constant of variation formula:

Given an initial-valued differential equation

x′(t) = ax(t) + f(t), x(0) = x0 ,

the solution is given by

x(t) = x0e
at +

∫ t

0

e(t−s)af(s) ds .
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Thus,

Vrv(t) = Vrv,syste
−t(crvRrv)−1

+

∫ t

0

e(t−s)(−(crvRrv)−1) 1

crvRrv

(crvPvs) ds

= Vrv,syste
−t(crvRrv)−1

+
1

Rrv

Pvs

∫ t

0

e(t−s)(−(crvRrv)−1) ds

= Vrv,syste
−t(crvRrv)−1

+
1

Rrv

Pvs

(
e−(crvRrv)−1t

)∫ t

0

e((crvRrv)−1)s ds

= Vrv,syste
−t(crvRrv)−1

+
1

Rrv

Pvs

(
e−(crvRrv)−1t

)( 1

(crvRrv)−1
e((crvRrv)−1)s

∣∣∣∣t
0

)
= Vrv,syste

−t(crvRrv)−1

+
1

Rrv

Pvs

(
e−(crvRrv)−1t

)( 1

(crvRrv)−1

[
e((crvRrv)−1)t − 1

])

Vrv(t) = Vrv,syste
−t(crvRrv)−1

+ crvPvs

(
1− e−t(crvRrv)−1

)
�

• Equation (2.23)

Vrv,str =
crvPvsar(H)f(Srv, Pap)

ar(H)Pap + kr(H)f(Srv, Pap)

Substituting equation (2.14) to equation (2.16) we obtain

Vrv,str = (kr(H)Vrv,syst + crvPvsar(H))− Vrv,syst

= (kr(H)− 1)Vrv,syst + crvPvsar(H)

= crvPvsar(H)− Vrv,systar(H) (ar(H) = 1− kr(H))

Vrv,str = (crvPvs − Vrv,syst) ar(H)

Solving Vrv,syst in terms of Vrv,str from the above equation gives

Vrv,str

ar(H)
= crvPvs − Vrv,syst

=⇒ Vrv,syst = crvPvs −
Vrv,str

ar(H)
(♠)
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From equation (2.17) we have
Pap
Srv

Vrv,str = Vrv,diast. Subtracting this from

equation (2.16) yields

Vrv,str −
Pap
Srv

= −Vrv,syst(
1− Pap

Srv

)
Vrv,str = −Vrv,syst

(Srv − Pap)Vrv,str = −SrvVrv,syst

(Srv − Pap)Vrv,str = −Srv
(
crvPvs −

Vrv,str

ar(H)

)
from (♠)

(Srv − Pap)Vrv,str = −crvPvsSrv +
Srv
ar(H)

Vrv,str(
Srv − Pap −

Srv
ar(H)

)
Vrv,str = −crvPvsSrv

(ar(H)Srv − ar(H)Pap − Srv)Vrv,str = −crvPvsar(H)Srv

((ar(H)− 1)Srv − ar(H)Pap)Vrv,str = −crvPvsar(H)Srv

(−kr(H)Srv − ar(H)Pap)Vrv,str = −crvPvsar(H)Srv

Vrv,str =
crvPvsar(H)Srv

kr(H)Srv + ar(H)Pap

�

• Equation (2.37):

dRsp

dt
=

1

K

(
Apesk

((
Pas − Pvs
Rsp

)
Ca,O2 −MT

)
− (Pas − Pvs)

)

dRsp

dt
= Apesk

d

dt
Cv,O2 (differentiating (2.35))

= −Apesk
Mb

K
(by (2.33))

= −Apesk

K

(
MT − F ∗sp (Ca,O2 − Cv,O2)

)
(by (2.32))

= −Apesk

K

(
MT −

1

Rsp

(Pas − Pvs) (Ca,O2 − Cv,O2)

)
(by (2.36))

= −Apesk

K

(
MT −

1

Rsp

(Pas − Pvs)
(
Ca,O2 −

Rsp

Apesk

))
(by (2.35))

= −Apesk

K

(
MT −

1

Rsp

(Pas − Pvs)Ca,O2 +
1

Apesk

(Pas − Pvs)
)
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Rearranging the terms we obtain

dRsp

dt
=

1

K

(
Apesk

((
Pas − Pvs
Rsp

)
Ca,O2 −MT

)
− (Pas − Pvs)

)
�

• Seventh equation in the full system (4.3):

dP`v(t)

dt
= E`v(t)

 dE`v(t)

dt
P`v(t)

E`v(t)
2 +

Pvp(t)− P`v(t)
Rmv(t)

− P`v(t)− Psa(t)
Rav(t)


Differentiating equation (2.27) with respect to t gives us

dP`v(t)

dt
=

dE`v(t)

dt
(V`v(t)− Vd) + E`v(t)

dV`v(t)

dt
.

Using the relation (2.7) and substituting it from above and finally rearranging

the terms yield

dP`v(t)

dt
=

dE`v(t)

dt

(
P`v(t)

E`v(t)

)
+ E`v(t)

(
Pvp(t)− P`v(t)

Rmv(t)
− P`v(t)− Psa(t)

Rav(t)

)

dP`v(t)

dt
= E`v(t)

 dE`v(t)

dt
P`v(t)

E`v(t)
2 +

Pvp(t)− P`v(t)
Rmv(t)

− P`v(t)− Psa(t)
Rav(t)


�

B.2 The Jacobian F(x̂, p̂,W, 0) with respect to x̂

For the modified simplified model with finger arterial compartment, we have

x̂ = (Psa, Pfa, Pas, Pvs, Pap, Rsp, S`v, σ`v, Srv, σrv, H)T ∈ R11 , (B.1)

and the coordinates of F(x̂, p̂,W, 0) are given by (4.33) with u(t) ≡ 0. Setting

ai j =
∂Fi
∂x̂j

(x̂, p̂,W, 0) , i, j = 1, . . . , 11,
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we obtain

a1 1 =
1

csa

(
∂Q`v

∂Psa
− 1

Rsc2

− 1

Rsc2

)
, a1 2 =

1

csa

(
∂Q`v

∂Pfa
+

1

Rsc1

)
,

a1 3 =
1

csa

(
∂Q`v

∂Pas
+

1

Rsc2

)
, a1 4 =

1

csa

∂Q`v

∂Pvs
,

a1 5 =
1

csa

∂Q`v

∂Pap
, a1 7 =

1

csa

∂Q`v

∂S`v
,

a1 6 = a1 8 = a1 9 = a1 10 = 0, a1 11 =
1

csa

∂Q`v

∂H
,

a2 1 =
1

cfaRsc1

, a2 2 = − 1

cfa

(
1

Rsc1

+
1

Rspf

)
,

a2 3 = 0, a2 4 =
1

cfaRspf

,

a2 5 = a2 6 = a2 7 = a2 8 = 0, a2 9 = a2 10 = a2 11 = 0,

a3 1 =
1

casRsc2

, a3 2 = 0,

a3 3 = − 1

cas

(
1

Rsc2

+
1

Rsp

)
, a3 4 =

1

casRsp

,

a3 5 = 0, a3 6 =
1

cas

(
Pas − Pvs
Rsp

2

)
,

a3 7 = a3 8 = a3 9 = 0, a3 10 = a3 11 = 0,

a4 1 = 0, a4 2 =
1

cvsRspf

,

a4 3 =
1

cvsRsp

, a4 4 = − 1

cvs

(
1

Rsp

+
1

Rspf

+
∂Qrv

∂Pvs

)
,

a4 5 =
1

cvs

∂Qrv

∂Pap
, a4 6 =

1

cvs

(
Pvs − Pas
Rsp

2

)
,

a4 7 = a4 8 = 0, a4 9 = − 1

cvs

∂Qrv

∂Srv
,

a4 10 = 0, a4 11 = − 1

cvs

∂Qrv

∂H
,

a5 1 = − csa
capcvpRpp

, a5 2 = − cfa
capcvpRpp

,

a5 3 = − cas
capcvpRpp

, a5 4 =
1

cap

(
∂Qrv

∂Pvs
− cvs
cvpRpp

)
,

a5 5 =
1

cap

(
∂Qrv

∂Pap
− 1

Rpp

(
1 +

cap
cvp

))
, a5 6 = a5 7 = a5 8 = a5 10 = 0,

a5 9 =
1

cap

∂Qrv

∂Srv
, a5 11 =

1

cap

∂Qrv

∂H
,
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a6 1 = a6 2 = 0, a6 3 =
1

K

(
ApeskCa,O2

Rsp

− 1

)
,

a6 4 =
1

K

(
1− ApeskCa,O2

Rsp

)
, a6 6 =

1

K

(
Apesk(Pvs − Pas)Ca,O2

Rsp
2

)
,

a6 5 = a6 7 = a6 8 = 0, a6 9 = a6 10 = a6 11 = 0,

a7 1 = a7 2 = a7 3 = a7 4 = 0, a7 5 = a7 6 = a7 7 = 0,

a7 8 = 1, a7 9 = a7 10 = a7 11 = 0,

a8 1 = a8 2 = a8 3 = 0, a8 4 = a8 5 = a8 6 = 0,

a8 7 = −α`v, a8 8 = −γ`v,

a8 9 = a8 10 = 0, a8 11 = β`v,

a9 1 = a9 2 = a9 3 = a9 4 = 0, a9 5 = a9 6 = a9 7 = 0,

a9 8 = a9 9 = a9 11 = 0, a9 10 = 1,

a10 1 = a10 2 = a10 3 = a10 4 = 0, a10 5 = a10 6 = a10 7 = 0,

a10 8 = 0, a10 9 = −αrv,

a10 10 = −γrv, a10 11 = βrv,

a11 1 = a11 2 = a11 3 = · · · = a11 9 = a11 10 = a11 11 = 0.
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The derivatives of Q`v and Qrv are as follows:

∂Q`v

∂Psa
=

Hc`va`(H)S`v
cvp

× a`(H) (cfaPfa + casPas + cvsPvs + capPap − Vtot)− csak`(H)S`v

(a`(H)Psa + k`(H)S`v)
2 ,

∂Q`v

∂Pfa
= −c`vcfa

cvp
· Ha`(H)S`v
a`(H)Psa + k`(H)S`v

∂Q`v

∂Pas
= −c`vcas

cvp
· Ha`(H)S`v
a`(H)Psa + k`(H)S`v

∂Q`v

∂Pvs
= −c`vcvs

cvp
· Ha`(H)S`v
a`(H)Psa + k`(H)S`v

∂Q`v

∂Pap
= −c`vcap

cvp
· Ha`(H)S`v
a`(H)Psa + k`(H)S`v

∂Q`v

∂S`v
=

Hc`va`(H)2 (Vtot − csaPsa − cfaPfa − casPas − cvsPvs − capPap)Psa
cvp (a`(H)Psa + k`(H)S`v)

2 ,

∂Q`v

∂H
=

c`vS`v (Vtot − csaPsa − cfaPfa − casPas − cvsPvs − capPap)
cvp (a`(H)Psa + k`(H)S`v)

2

×
(
a`(H)2 (Psa − S`v) + S`v (1− k`(H)−Hk′`(H))

)
,

∂Qrv

∂Pvs
=

Hcrvar(H)Srv
ar(H)Pap + kr(H)Srv

,

∂Qrv

∂Pap
= − Hcrvar(H)2SrvPvs

(ar(H)Pap + kr(H)Srv)
2 ,

∂Qrv

∂Srv
=

Hcrvar(H)2PvsPap

(ar(H)Pap + kr(H)Srv)
2 ,

∂Qrv

∂H
=

crvSrvPvs

(ar(H)Pap + kr(H)Srv)
2

×
(
ar(H)2 (Pap − Srv) + Srv (1− kr(H)−Hk′r(H))

)
,

where we have used

k′`(H) = − 1

c`vR`v

k`(H)t′d(H), k′r(H) = − 1

crvRrv

kr(H)t′d(H),

and t′d(H) =
1

H2

(κ
2
H1/2 − 1

)
.
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B.3 The Jacobian B(x̌, p̌,W, 0) with respect to x̌

For the modified simplified model without the finger arterial compartment, we have

x̌ = (Psa, Pas, Pvs, Pap, Rsp, S`v, σ`v, Srv, σrv, H)T ∈ R10 , (B.2)

and the coordinates of B(x̌, p̌,W, 0) are given by (4.39) with u(t) ≡ 0. Setting

bi j =
∂Bi
∂x̌j

(x̌, p̌,W, 0) , i, j = 1, . . . , 10,

we obtain

b1 1 =
1

csa

(
∂Q`v

∂Psa
− 1

Rsc2

)
, b1 2 =

1

csa

(
∂Q`v

∂Pas
+

1

Rsc2

)
,

b1 3 =
1

csa

∂Q`v

∂Pvs
, b1 4 =

1

csa

∂Q`v

∂Pap
,

b1 5 = 0 b1 6 =
1

csa

∂Q`v

∂S`v
,

b1 7 = b1 8 = b1 9 = 0, b1 10 =
1

csa

∂Q`v

∂H
,

b2 1 =
1

casRsc2

, b2 2 = − 1

cas

(
1

Rsc2

+
1

Rsp

)
b2 3 =

1

casRsp

, b2 4 = 0,

b2 5 =
1

cas

(
Pas − Pvs
Rsp

2

)
, b2 6 = 0,

b2 7 = b2 8 = 0, b2 9 = b2 10 = 0,

b3 1 = 0, b3 2 =
1

cvsRsp

,

b3 3 = − 1

cvs

(
1

Rsp

+
∂Qrv

∂Pvs

)
, b3 4 =

1

cvs

∂Qrv

∂Pap
,

b3 5 =
1

cvs

(
Pvs − Pas
Rsp

2

)
, b3 6 = 0,

b3 7 = 0, b3 8 = − 1

cvs

∂Qrv

∂Srv
,

b3 9 = 0, b3 10 = − 1

cvs

∂Qrv

∂H
,
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b4 1 = − csa
capcvpRpp

, b4 2 = − cas
capcvpRpp

,

b4 3 =
1

cap

(
∂Qrv

∂Pvs
− cvs
cvpRpp

)
, b4 4 =

1

cap

(
∂Qrv

∂Pap
− 1

Rpp

(
1 +

cap
cvp

))
,

b4 5 = 0, b4 6 = 0,

b4 7 = 0, b4 8 =
1

cap

∂Qrv

∂Srv
,

b4 9 = 0, b4 10 =
1

cap

∂Qrv

∂H
,

b5 1 = 0, b5 2 =
1

K

(
ApeskCb,O2

Rsp

− 1

)
,

b5 3 =
1

K

(
1− ApeskCa,O2

Rsp

)
, b5 4 = 0,

b5 5 =
1

K

(
Apesk(Pvs − Pas)Ca,O2

Rsp
2

)
, b5 6 = 0,

b5 7 = b5 8 = 0, b5 9 = b5 10 = 0,

b6 1 = b6 2 = b6 3 = 0, b6 4 = b6 5 = b6 6 = 0,

b6 7 = 1, b6 8 = b6 9 = b6 10 = 0,

b7 1 = b7 2 = b7 3 = 0, b7 4 = b7 5 = 0,

b7 6 = −α`v, b7 7 = −γ`v,

b7 8 = b7 9 = 0, b7 10 = β`v,

b8 1 = b8 2 = b8 3 = b8 4 = 0, b8 5 = b8 6 = b8 7 = 0,

b8 8 = b8 10 = 0, b8 9 = 1,

b9 1 = b9 2 = b9 3 = 0, b9 4 = b9 5 = b9 6 = 0,

b9 7 = 0, b9 8 = −αrv,

b9 9 = −γrv, b9 10 = βrv,
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b10 1 = b10 2 = b10 3 = · · · = b10 9 = b10 10 = 0.

The derivatives of Q`v and Qrv are as follows:

∂Q`v

∂Psa
=

Hc`va`(H)S`v
cvp

× a`(H) (casPas + cvsPvs + capPap − Vtot)− csak`(H)S`v

(a`(H)Psa + k`(H)S`v)
2 ,

∂Q`v

∂S`v
=

Hc`va`(H)2 (Vtot − csaPsa − casPas − cvsPvs − capPap)Psa
cvp (a`(H)Psa + k`(H)S`v)

2 ,

∂Q`v

∂H
=

c`vS`v (Vtot − csaPsa − casPas − cvsPvs − capPap)
cvp (a`(H)Psa + k`(H)S`v)

2

×
(
a`(H)2 (Psa − S`v) + S`v (1− k`(H)−Hk′`(H))

)
,

∂Qrv

∂Pvs
=

Hcrvar(H)Srv
ar(H)Pap + kr(H)Srv

,

where
∂Q`v

∂Pas
,
∂Q`v

∂Pvs
,
∂Q`v

∂Pap
,
∂Qrv

∂Pvs
,
∂Qrv

∂Pap
,
∂Qrv

∂Srv
,
∂Qrv

∂H
, k′`(H), k′r(H), and t′d(H) are

the same as in Appendix B.2.
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